三角形課件教案。
老師每一堂課都需要一份完整教學(xué)課件,所以在寫的時候老師們就要花點時間咯。?教案課件的工作是新老師提高教學(xué)技能和水平的基礎(chǔ),如何才算是寫好一份教案課件呢?三角形的課件教案是幼兒教師教育網(wǎng)小編為您準(zhǔn)備的一些與您需要相關(guān)的內(nèi)容,希望您分享本頁內(nèi)容與您朋友!
尊敬的各位評委,各位老師:
大家好!今天我說課的內(nèi)容是人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教材數(shù)學(xué)四年級下冊85頁內(nèi)容《三角形的內(nèi)角和》。
一、教材分析
新課標(biāo)把三角形的內(nèi)角和作為第二學(xué)段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之后進行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材所呈現(xiàn)的內(nèi)容,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學(xué)生在動手操作、合作交流中發(fā)現(xiàn)并形成結(jié)論。
二、學(xué)情分析
1、通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與技能基礎(chǔ)。
2、學(xué)生的生活經(jīng)驗是可利用的教學(xué)資源。我在課前了解到,已經(jīng)有不少學(xué)生知道了三角形內(nèi)角和是180度,,但卻不知道怎樣才能得出這個結(jié)論,因此學(xué)生在這節(jié)課上的主要目標(biāo)是驗證三角形的內(nèi)角和是180度。
三、教學(xué)目標(biāo)
基于以上對教材的分析以及對學(xué)生情況的思考,我從知識與技能,過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學(xué)目標(biāo):
1、通過"量一量","算一算","拼一拼","折一折"的方法,讓學(xué)生推理歸納出三角形內(nèi)角和是180°,并能應(yīng)用這一知識解決一些簡單問題。
2、通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透"轉(zhuǎn)化"的數(shù)學(xué)思想。
3、通過數(shù)學(xué)活動使學(xué)生獲得成功的體驗,增強自信心,培養(yǎng)學(xué)生的創(chuàng)新意識,探索精神和實踐能力。
教學(xué)重難點:理解并掌握三角形的內(nèi)角和是180度這一結(jié)論。
四、教學(xué)準(zhǔn)備:
教具:多媒體課件,
學(xué)具:各類三角形、長方形、量角器、活動記錄表等。
五、教法和學(xué)法
“三角形的內(nèi)角和”一課,知識與技能目標(biāo)并不難,但我認為本節(jié)課更重要的是通過自主探索與合作交流使學(xué)生經(jīng)歷知識的形成過程,領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應(yīng)用,以及在探索過程中,培養(yǎng)學(xué)生實事求是、敢于質(zhì)疑的科學(xué)態(tài)度,同時,在不同方法的交流中,開拓思維、提升能力。基于以上理念,本節(jié)課,我準(zhǔn)備引導(dǎo)學(xué)生采用自主探究、動手操作、猜想驗證、合作交流的學(xué)習(xí)方法,并在教學(xué)過程中談話激疑,引導(dǎo)探究;組織討論,適時地啟發(fā)幫助。使教法和學(xué)法和諧統(tǒng)一在“以學(xué)生的發(fā)展為本”這一教育目標(biāo)之中。
六、教學(xué)過程
本節(jié)課,我遵循“學(xué)生主動和教師指導(dǎo)相統(tǒng)一,問題主線和活動主軸相統(tǒng)一”的原則,制定了以下教學(xué)程序:
(一)創(chuàng)設(shè)情境,激發(fā)興趣
“興趣是最好的老師”。開課伊始我利用課件動態(tài)演示一只蝴蝶在把一條繩子圍成不同的三角形。讓學(xué)生觀察在圍的過程中,什么變了?什么沒變?讓學(xué)生在變與不變的觀察與對比中,激發(fā)學(xué)生的學(xué)習(xí)興趣,引出本節(jié)課的學(xué)習(xí)內(nèi)容(板書:三角形的內(nèi)角和),為后面的探索奠定基礎(chǔ)。
【設(shè)計意圖:以問題情境為出發(fā)點,既豐富了學(xué)生的感官認識,又激發(fā)了學(xué)生的學(xué)習(xí)熱情。】
(二)動手操作,探索新知
本環(huán)節(jié)是學(xué)生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導(dǎo)學(xué)生主動參與實踐活動、經(jīng)歷知識的形成過程。
1、揭示“內(nèi)角”和“內(nèi)角和”的概念
明確“內(nèi)角”和“內(nèi)角和”的概念是學(xué)生進一步探究內(nèi)角和度數(shù)的前提,本環(huán)節(jié)首先請學(xué)生都拿出一個三角形,指一指三個內(nèi)角,然后讓學(xué)生談?wù)勛约簩?nèi)角和的理解,在大家交流的基礎(chǔ)上得出:三角形的內(nèi)角和就是三個內(nèi)角的度數(shù)之和。
2、猜測內(nèi)角和
牛頓曾說:“沒有大膽的猜想,就沒有偉大的發(fā)現(xiàn)!”所以我放手讓學(xué)生猜測三角形內(nèi)角和的度數(shù),由于絕大多數(shù)學(xué)生有課外知識的積累,不難說出三角形的內(nèi)角和是180度,但猜想并不等于結(jié)論,三角形的內(nèi)角和到底是不是180度?(板書:?)還要進一步的驗證。猜想——驗證是學(xué)生探究數(shù)學(xué)的有效途徑。
3、動手驗證,匯報交流
(1)介紹學(xué)具筐
由教師介紹學(xué)具筐中都有什么學(xué)習(xí)材料。
(2)生獨立思考、動手操作
因為合作交流應(yīng)建立在獨立思考的基礎(chǔ)上,所以先讓學(xué)生獨立思考:打算選用什么材料,怎樣來驗證三角形的內(nèi)角和是不是180°。然后再讓學(xué)生把想法付諸實踐。此環(huán)節(jié)會留給學(xué)生充分的思考、操作、發(fā)現(xiàn)的時間,讓學(xué)生在探索中找到證明的切入點,體驗成功。在這期間,教師走下講臺,參與學(xué)生的活動,與學(xué)生一起尋找驗證的方法,對有困難的學(xué)生提供幫助,不放棄任何一個學(xué)生。
(3)組內(nèi)交流
經(jīng)過獨立思考和動手操作,每人都有了自己的驗證方法,先在小組內(nèi)交流各自的驗證方法。
(4)全班匯報交流。
在足夠的交流之后,開始進入全班匯報展示過程,達到智慧共享的目的。學(xué)生可能會出現(xiàn)以下幾種方法:
A、測量方法
活動記錄表
三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角和
∠1∠2∠3
這個驗證方法應(yīng)是大多數(shù)學(xué)生都能想到的,在交流匯報結(jié)果時會發(fā)現(xiàn)答案不統(tǒng)一,可能會出現(xiàn)大于180度、等于180度或小于180度不同的結(jié)果。此時學(xué)生會在心中產(chǎn)生更大的疑惑,“三角形的內(nèi)角和到底是多少度?誰的答案正確呢?”在這里教師要抓住契機,肯定學(xué)生實事求是的態(tài)度和質(zhì)疑的精神,把這一問題拋給學(xué)生,再次激起學(xué)生的探究熱情,強烈的求知欲和好勝心讓學(xué)生躍躍欲試,讓學(xué)生充分發(fā)表觀點,最終使學(xué)生認識到測量法會有誤差,看來僅用一種測量的方法來驗證只能得到三角形的內(nèi)角和在180°左右,到底是不是180°,疑問依然存在,說服力還不夠,此時我順?biāo)浦?,讓用不同驗證方法的學(xué)生上臺匯報展示。
B、撕拼法
我認為數(shù)學(xué)課不僅是解決數(shù)學(xué)問題,更重要的是思維方式的點撥,使數(shù)學(xué)思想的種子播種在學(xué)生的頭腦中。本環(huán)節(jié)主要想實現(xiàn)向?qū)W生滲透“轉(zhuǎn)化”的數(shù)學(xué)思想的教學(xué)目標(biāo)。四年級學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)過程中都積累了不少“轉(zhuǎn)化”的體驗,但這種體驗基本上處于無意識的狀態(tài),只有合理呈現(xiàn)學(xué)習(xí)素材,才能使學(xué)生對轉(zhuǎn)化策略形成清晰的認識。所以我請用撕拼法的同學(xué)上臺展示撕拼的過程,學(xué)生可能會撕拼不同類型的三角形,如:
此時教師適時追問:你是怎么想到把三個內(nèi)角撕下來拼成一個平角來驗證的呢?因為平角是180度,三角形的三個內(nèi)角拼在一起正好形成了一個平角,所以三角形的內(nèi)角和就是180度。教師可及時評價點撥:“你們把本不在一起的三個角,通過移動位置,把它轉(zhuǎn)化成一個平角來驗證,運用了轉(zhuǎn)化策略,真了不起?!睆亩箤W(xué)生清晰的感受到數(shù)學(xué)學(xué)習(xí)就是把新知轉(zhuǎn)化成舊知的過程。
C、其它方法
除了以上兩種驗證方法外,學(xué)生可能還會出現(xiàn)不同的驗證方法,比如折一折的方法,把三個完全相同的三角形用不同的三個內(nèi)角拼成一個平角來驗證的方法,例圖:
如果學(xué)生出現(xiàn)用長方形剪成兩個完全相同的直角三角形或把兩個完全相同的直角三角形拼成長方形來驗證的方法,例圖:
教師可追問:“這種方法只能證明哪一類的三角形呢?”使學(xué)生明白,這種驗證方法有局限性,只能證明直角三角形的內(nèi)角和是180°。然后教師引導(dǎo)學(xué)生歸納出這些不同方法都有異曲同工之妙,就是都運用了轉(zhuǎn)化的策略,讓學(xué)生在不知不覺中進一步感悟轉(zhuǎn)化在數(shù)學(xué)學(xué)習(xí)中的重要作用。通過各種方法的展示交流,學(xué)生對三角形內(nèi)角和是不是180度的疑問已經(jīng)消除,所以可以把“?”改成“?!?/p>
【設(shè)計意圖:《標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗?!痹诮虒W(xué)設(shè)計中我注意體現(xiàn)這一理念,允許學(xué)生根據(jù)已有的知識經(jīng)驗進行猜測,在猜測后先獨立思考驗證的方法,再進行小組交流。給學(xué)生充分的活動時間和空間,讓學(xué)生動手操作,使學(xué)生在量、剪、拼、折等一系列實驗活動中理解和掌握三角形內(nèi)角和是180°這個圖形性質(zhì)。在探索活動中,使學(xué)生學(xué)會與他人合作,同時也使學(xué)生學(xué)到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)他們主動探索的精神,讓學(xué)生在活動中學(xué)習(xí),在活動中發(fā)展?!?/p>
4、科學(xué)驗證方法
數(shù)學(xué)是一門嚴(yán)謹?shù)膶W(xué)科,數(shù)學(xué)結(jié)論的得出必須經(jīng)過嚴(yán)格的證明。那如何科學(xué)地驗證三角形內(nèi)角和是不是180°呢?用課件動態(tài)演示科學(xué)家的驗證方法。
【設(shè)計意圖:一方面使學(xué)生為自己猜想的結(jié)論能被證明而產(chǎn)生滿足感;另一方面使學(xué)生體會到數(shù)學(xué)是嚴(yán)謹?shù)?,從小就?yīng)該讓學(xué)生養(yǎng)成嚴(yán)謹、認真、實事求是的學(xué)習(xí)態(tài)度?!?/p>
(三)課外拓展,積淀文化
為了使學(xué)生在獲得數(shù)學(xué)知識的同時積淀數(shù)學(xué)文化,用課件介紹最早發(fā)現(xiàn)三角形內(nèi)角和秘密的法國科學(xué)家帕斯卡(課件)讓學(xué)生交流:聽了這個故事,你想說什么?在學(xué)生交流的基礎(chǔ)上,教師抓住契機,及時鼓勵學(xué)生:這節(jié)課才10歲的我們利用自己的智慧發(fā)現(xiàn)了帕斯卡12歲時數(shù)學(xué)發(fā)現(xiàn),我們同樣了不起,劉老師為大家感到驕傲?。ò鍟海。┻@個感嘆號不僅表示教師對學(xué)生的贊嘆,更是學(xué)生對自我的一種肯定,獲得成功的自豪感。
【設(shè)計意圖:適當(dāng)?shù)囊胝n外知識,它既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又有機的滲透了向帕斯卡學(xué)習(xí),做一個善于思考、善于發(fā)現(xiàn)的孩子,對學(xué)生的情感、態(tài)度、價值觀的形成與發(fā)展能起到了潛移默化的作用。】
(四)應(yīng)用新知,解決問題
數(shù)學(xué)規(guī)律的形成與深化,不僅靠感知,還要輔以靈活、有趣、有層次的課堂訓(xùn)練,以達到練習(xí)的有效性。對此,我設(shè)計了三個層次的練習(xí):
1、把兩個小三角形拼成一起,大三形的內(nèi)角和是多少度?為什么?
【設(shè)計意圖:通過兩個三角形分與合的過程,讓學(xué)生進一步理解三角形內(nèi)角和等于180度這個結(jié)論,認識到三角形的內(nèi)角和不因三角形的大小而改變。】
2、想一想,做一做
在一個三角形ABC中,已知∠A═45°,∠B═85,求∠с的度數(shù)。
在一個直角三角形中,已知∠с═52,求∠A的度數(shù)。
爸爸給小紅買了一個等腰三角形的風(fēng)箏。它的一個底角是70°,它的頂角是多少度?
【設(shè)計意圖:將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導(dǎo)學(xué)生綜合運用內(nèi)角和知識和直角三角形、等腰三角形等圖形特征求三角形內(nèi)角的度數(shù)?!?/p>
3、思考:
你能畫出一個有兩個直角或兩個鈍角的三角形嗎?為什么?
【設(shè)計意圖:將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導(dǎo)學(xué)生運用三角形內(nèi)角和的知識去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識之間的聯(lián)系?!?/p>
(五)全課小結(jié),完善新知
你在這堂課中有什么收獲?
【設(shè)計意圖:這樣用談話的方式進行總結(jié),不僅總結(jié)了所學(xué)知識技能,還體現(xiàn)了學(xué)法的指導(dǎo),增強了情感體驗?!?/p>
板書設(shè)計:
三角形的內(nèi)角和180°
三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角和
∠1∠2∠3
總之,本節(jié)課我力圖引導(dǎo)學(xué)生通過自主探究、合作交流,讓學(xué)生充分經(jīng)歷一個知識的學(xué)習(xí)過程,讓學(xué)生學(xué)會數(shù)學(xué)、會學(xué)數(shù)學(xué)、愛學(xué)數(shù)學(xué)。在教學(xué)中,隨時會生成一些新教學(xué)資源,課堂的生成一定大于課前預(yù)設(shè),我將及時調(diào)整我的預(yù)案,以達到最佳的教學(xué)效果。
教學(xué)特色:
本節(jié)課我努力體現(xiàn)以下2個教學(xué)特色:
1、引導(dǎo)學(xué)生自主探索,激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)以學(xué)生的發(fā)展為本的教學(xué)理念。
強化學(xué)生探究學(xué)習(xí)的心理體驗,把數(shù)學(xué)學(xué)習(xí)和情感態(tài)度的發(fā)展有機的結(jié)合起來。
微課作品介紹本微課是蘇教版小學(xué)數(shù)學(xué)四年級下冊《三角形內(nèi)角和》的課前先學(xué)指導(dǎo),學(xué)生在家觀看視頻內(nèi)容,同時結(jié)合學(xué)習(xí)任務(wù)單,在視頻的指導(dǎo)下通過猜、量、算、剪、拼等方法探索三角形的內(nèi)角和是180度。學(xué)生在課前利用視頻完成學(xué)習(xí)任務(wù)單,然后到學(xué)校課堂中和老師、同學(xué)進行交流,再進一步提升。
教學(xué)需求分析適用對象分析該微課的適用對象是蘇教版四年級下學(xué)期的小學(xué)生,學(xué)生應(yīng)認識三角形的基本特征,學(xué)習(xí)過角和角的度量,知道平角是180度。具備了一定的動手操作能力和數(shù)學(xué)思維能力。
學(xué)習(xí)內(nèi)容分析該微課讓學(xué)生發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180度的結(jié)論。這部分內(nèi)容是在學(xué)生認識了三角形的基本特征和三邊的關(guān)系后,三角形分類前學(xué)習(xí)的。這在蘇教版中和原來的教材不同,放在這里是因為三角形內(nèi)角和是學(xué)生進一步學(xué)習(xí)和探究三角形分類方法的重要前提。學(xué)生知道了三角形的內(nèi)角和是180度,對三角形分類及命名的方法,才能知其然,還能知其所以然。
教學(xué)目標(biāo)分析:
1、通過學(xué)生的實際操作,理解并驗證三角形的內(nèi)角和等于180°,并能夠運用結(jié)論解決簡單的實際問題;
2、使學(xué)生通過觀察、實驗,經(jīng)歷猜想與驗證三角形內(nèi)角和的探索過程,在活動中發(fā)展學(xué)生的空間觀念和推理能力。
3、已經(jīng)有不少學(xué)生知道了三角形內(nèi)角和是180度,,但卻不知道怎樣才能得出這個結(jié)論,因此學(xué)生在學(xué)習(xí)時的主要目標(biāo)是驗證三角形的內(nèi)角和是180度。
教學(xué)過程設(shè)計本微課教學(xué)過程:
一、明確多邊形的內(nèi)角、內(nèi)角和概念。
首先要明確概念,才好繼續(xù)研究。內(nèi)角、內(nèi)角和以前學(xué)生沒有學(xué)過,還是有必要給學(xué)生明確的。
二、探索三角尺的內(nèi)角和,猜想三角形的內(nèi)角和。
從學(xué)生熟悉的三角板開始計算三角板的內(nèi)角和,引發(fā)學(xué)生猜想,三角形的內(nèi)角和是多少。
三、驗證三角形內(nèi)角和是否為180°。
驗證分為三個層次:首先是量教材提供的三角形,算出內(nèi)角和,可能會有誤差。其次把三角形三個內(nèi)角拼在一起,拼成是平角180度。最后自己任意畫一個三角形剪下來,拼一拼,得出結(jié)論。讓學(xué)生經(jīng)歷由特殊到一般的認知過程。
四、拓展延伸,探究梯形、平行四邊形和六邊形內(nèi)角和。
由三角形的內(nèi)角和,學(xué)生自然就會想到已學(xué)過的梯形、平行四邊形和六邊形內(nèi)角和是多少呢。教師留下問題讓學(xué)有余力的學(xué)生進一步去探索。
五、自主學(xué)習(xí)檢測
學(xué)生觀看完了視頻是否學(xué)會了,是需要檢測的。學(xué)生通過做完自主檢測后進行校對,檢驗自己所學(xué)。
學(xué)習(xí)指導(dǎo)本微視頻應(yīng)配合下面的學(xué)習(xí)任務(wù)單共同使用,在觀看視頻時,根據(jù)視頻提示隨時暫停視頻依次完成任務(wù)單。
自主學(xué)習(xí)前準(zhǔn)備:
請在自主學(xué)習(xí)前閱讀學(xué)習(xí)任務(wù)單的學(xué)習(xí)指南,并準(zhǔn)備好數(shù)學(xué)書、一副三角尺、量角器、剪刀、鉛筆等學(xué)習(xí)用具。
自主學(xué)習(xí)任務(wù)單:
通過觀看教學(xué)資源自學(xué),完成下列學(xué)習(xí)任務(wù):
任務(wù)一:明確多邊形的內(nèi)角、內(nèi)角和概念
1、你認識下面的圖形嗎?他們各有幾個角,請在圖中標(biāo)出來。
2、你剛才標(biāo)出的角,又叫做每個圖形的()。
3、如果把一個圖形所有的內(nèi)角的度數(shù)加起來,所得的總和就是這個圖形的()。
4、你知道圖中長方形和正方形的內(nèi)角和是多少度嗎?你是怎么知道的?
長方形內(nèi)角和正方形內(nèi)角和
任務(wù)二:探索三角尺的內(nèi)角和,猜想三角形的內(nèi)角和。
1、請拿出一副三角尺,你知道每塊三角尺上各個角的度數(shù)?在圖上標(biāo)出來。
2、算一算,每個三角尺3個內(nèi)角的和是多少度。
3、根據(jù)你剛才的計算結(jié)果,你能猜想一下,任意一個三角形它的內(nèi)角和的度數(shù)呢?
任務(wù)三:驗證任意三角形內(nèi)角和是否為180°
1、請從數(shù)學(xué)書本第113頁剪下3個三角形,用量角器量出每個三角形3個內(nèi)角的度數(shù)。
算一算,每個三角形3個內(nèi)角的和是多少度。
2還可以用什么辦法來驗證剪下的這3個三角形的內(nèi)角和等于180度?(把你的驗證方法展示在下面。)如果你想不出來請看下面的提示。
溫馨提示:平角正好是180°,這三個內(nèi)角能正好拼成一個平角嗎?
3、自己任意畫一個三角形,先剪下來,再拼一拼。
4、你發(fā)現(xiàn)了什么?寫在下面。
5、請你回顧一下我們研究三角形形內(nèi)角和是180度的過程?簡單的寫下來。
任務(wù)四:拓展延伸
任務(wù)一中還有梯形、平行四邊形和六邊形,如果你有興趣,你可以研究他們的內(nèi)角和。
任務(wù)五:自主學(xué)習(xí)檢測
1、右邊三角形中,∠1=75°,∠2=40°,∠3=()°
2、第3個三角形還可以怎樣計算,哪種更簡便?
3、一塊三角尺的內(nèi)角和是180°,用兩塊完全一樣的三角尺拼成一個三角形,拼成的三角形內(nèi)角和是多少度?
4、用一張長方形紙折一折,填一填
配套學(xué)習(xí)資料蘇教版小學(xué)數(shù)學(xué)四年級下冊教材
制作技術(shù)介紹CamtasiaStudio軟件制作、PPT。
1、通過量、剪、拼、擺等直觀操作的方法,讓學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。
2、在活動交流中培養(yǎng)學(xué)生合作學(xué)習(xí)的意識和能力,讓學(xué)生經(jīng)歷猜測探索總結(jié)的數(shù)學(xué)學(xué)習(xí)過程,在實驗活動中體驗探索的過程和方法。
3、通過運用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學(xué)生體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,體會到數(shù)學(xué)的價值,增加學(xué)生學(xué)數(shù)學(xué)的信心和興趣。
探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應(yīng)用。
三角形內(nèi)角和是180的探索和驗證。
師:大家喜歡猜謎語嗎?
生:喜歡。
師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學(xué)問不簡單。
(打一幾何圖形))
生:三角形。
師:三角形中都有哪些學(xué)問?
生:三角形有三條邊,三個角,具有穩(wěn)定性。
生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。
生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。
生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。
生:三角形的內(nèi)有和是180。
生:(一臉疑惑)
師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?
生:每個三角形的內(nèi)角和都是180嗎?
(根據(jù)學(xué)生的問題,在三角形的內(nèi)角和是180后面加上一個?)
1、理解內(nèi)角 師:什么是內(nèi)角?
生:我認為三角形的內(nèi)角就是指三角形的三個角。
師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。
2、理解內(nèi)角和。
師:那三角形的內(nèi)角和又是指什么?
生:我認為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。
師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。
3、實踐驗證
師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗證呢?
生:量一量每個角的度數(shù),然后加起來看看是不是180。
師:請大家拿出課前準(zhǔn)備的三角形,親自量一量,算一算。(學(xué)生動手量一量)
師:誰愿意把你的勞動成果和大家分享一下?
生:我量的這個三角形的三個內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。
師:這位同學(xué)量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。
生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。
師:這是我們?nèi)浅咧械囊粋€,也比較特殊,是一個等腰直角三角形。
生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。
師:你發(fā)現(xiàn)了什么?
生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。
師:看來三角形的內(nèi)角和不一定是180。
生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結(jié)果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。
生:都接近180就能說一定是180嗎?
師:科學(xué)來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學(xué)們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學(xué)具進行驗證,比一比哪些組的方法富有新意,開始!
(學(xué)生在小組內(nèi)進行探索驗證。教師巡視,參與到學(xué)生的研究中)
師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。
生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個平角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。
師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?
生:我們小組也有折的直角三角形,鈍角三角形。
(其它的成員展示不同的三角形)
師:看這個小組的同學(xué)想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!
師:哪個小組和他們的方法不一樣?
生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實驗了不同的三角形,三個內(nèi)角都可以拼成平角,所以我們小組得出結(jié)論,三角形的內(nèi)角和是180。
師:這個小組的方法簡便,易操作,很好。
生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180。 師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!
4、小結(jié)
師:剛才同學(xué)們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?
生:沒有。
師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。
1、說一說每個三角形的內(nèi)角和是多少度
師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?
生: 180
師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?
生:180
師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?
生:180
師:為什么每個三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?
生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180
師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?
生:180
2、求下面各角的度數(shù)
師:如果老師告訴你一個三角形的兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?
(出)
生:三角形內(nèi)角和是180,在第一個三角形中,用180-75-28,A=77
生:用180-90-35,C =55。
生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。
生:第三個三角形中,用180-20-45,B=115。
3、一個等腰三角形的風(fēng)箏,它的一個底角是70,它的頂角是多少度?
生:等腰三角形的兩個底角相等,所以用180-70-70 4、
師:三角形的內(nèi)角和在我們的生活中應(yīng)用很廣泛,老師給大家?guī)硪粋€在建筑中應(yīng)用的例子。
在設(shè)計這座大橋時,如果設(shè)計師將斜拉的鋼索與橋柱形成的夾角設(shè)計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?
生:用量角器量一量
師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?
生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56
師:你真是個善于觀察、善于思考的孩子,努力學(xué)習(xí),將來一定會成為一名優(yōu)秀的建筑師。
四、回顧總結(jié),拓展延伸
師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?
生:我知道了三角形的內(nèi)角和是180。
生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。
生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。
生:我可以用撕、拼、折等方法來驗證三角形的內(nèi)角和是180。
師:這個同學(xué)不僅學(xué)會了知識,而且學(xué)會了方法,我們只有學(xué)會了方法,才能更好地去探究更多的知識。
師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?
生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。
生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。
師:我們學(xué)習(xí)知識,必須知其然并知其所以然。
師:三角形中還有許許多多的學(xué)問,讓我們在以后的學(xué)習(xí)中繼續(xù)去研究。
學(xué)習(xí)目標(biāo):
1、認識現(xiàn)實生活中物體的相似,能利用相似三角形的性質(zhì)解決一些簡單的實際問題。
2、通過把實際問題轉(zhuǎn)化成有關(guān)相似三角形的數(shù)學(xué)模型,培養(yǎng)分析問題、解決問題的能力.
學(xué)習(xí)過程:
一、創(chuàng)設(shè)情景,引入新課
1、說一說相似三角形的判定方法有哪些,相似三角形的性質(zhì)有哪些?
2、大家都知道矗立在城中的科技大樓是我們這里比較高的樓,那么科技大樓有多高呢?
我們?nèi)绾斡靡恍┖唵蔚姆椒ㄈy量出科技大樓的高度呢?
二合作交流,解讀探究
導(dǎo)入新課:閱讀課本73頁例6完成下列任務(wù):
例6中當(dāng)金字塔的高度不能直接測量時,本題中構(gòu)造了_______和_______相似,且_______、________、_________是已知或能測量的。
說一說測量金字塔高度的方案并加以證明。
【學(xué)法指導(dǎo)】同一時刻太陽光是平行直線,從而得到角相等,得到相似三角形。
例7中河的寬度也是無法直接測量的,本題中構(gòu)造了_________和________相似,且_______、__________、__________是已知或能測量的。
說一說測量河的寬度的方案并加以證明。
今天我說課的內(nèi)容是人教版九年義務(wù)教育小學(xué)數(shù)學(xué)四年級下冊第五單元第67頁的《三角形的內(nèi)角和》。根據(jù)xxx教授的授課七步法,即說教材,說學(xué)情,說目標(biāo),說模式,說方法,說設(shè)計,說板書,我將進行本課的說課。
一、說教材
“三角形的內(nèi)角和”是新課標(biāo)人教版四年級下冊第五單元第三節(jié)的內(nèi)容。本節(jié)課是在學(xué)生學(xué)過角的度量、三角形的特征和分類等知識的基礎(chǔ)上進行教學(xué)的,“三角形的內(nèi)角和”是三角形的一個重要性質(zhì),學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進一步學(xué)習(xí)幾何的基礎(chǔ)。
仔細分析教材的知識結(jié)構(gòu),它是分成3個部分來呈現(xiàn)的。第一部分是讓學(xué)生通過量一量、算一算,初步感知三角形的內(nèi)角和是180°;第二部分是通過拼角的實驗來探究并歸納三角形內(nèi)角和的規(guī)律,第三部分是運用規(guī)律、解決問題。教材這樣編排由發(fā)現(xiàn)問題,到驗證問題,再到運用規(guī)律,充分體現(xiàn)了知識結(jié)構(gòu)的有序性和強烈的數(shù)學(xué)建模思想,既符合四年級學(xué)生的認知規(guī)律,又突出了本課教學(xué)的重點。
二、說學(xué)情
1、通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎(chǔ)技能。
2、學(xué)生的生活經(jīng)驗是可利用的教學(xué)資源。我在課前了解到,已經(jīng)有不少學(xué)生知道了三角形內(nèi)角和是180度,但卻不知道怎樣才能得出這個結(jié)論,因此學(xué)生在這節(jié)課上的主要目標(biāo)是驗證三角形的內(nèi)角和是180度。
三、說目標(biāo)
根據(jù)小學(xué)數(shù)學(xué)教學(xué)大綱對四年級學(xué)生的具體要求,結(jié)合教材特點及學(xué)生年齡特征,將本節(jié)課的目標(biāo)制定為以下幾點:
認知技能:學(xué)生動手操作,在猜想后通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)"三角形內(nèi)角和等于180度"的規(guī)律。
數(shù)學(xué)思考:在操作實驗中,讓學(xué)生感受圖形的轉(zhuǎn)化過程及數(shù)學(xué)建模思想,初步培養(yǎng)學(xué)生的空間思維觀念。
解決問題:在運用知識解決問題的過程中,感受所學(xué)知識的重要性,初步培養(yǎng)學(xué)生的應(yīng)用意識。
情感態(tài)度:通過各種實驗活動,激發(fā)學(xué)習(xí)興趣,體驗學(xué)習(xí)成功感,并在教學(xué)中,感受生活與數(shù)學(xué)的密切聯(lián)系。
將運用各種實驗方法探究三角形內(nèi)角和為180度的過程并掌握規(guī)律,運用規(guī)律解決實際問題確定為本節(jié)課的教學(xué)重點。而同時學(xué)生難以理解不易掌握的探究規(guī)律的全過程則是本節(jié)課的教學(xué)難點。
四、說模式
“三角形的內(nèi)角和”一課,知識與技能目標(biāo)并不難,我認為本節(jié)課更重要的是通過自主探索與合作交流使學(xué)生經(jīng)歷知識的形成過程,領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應(yīng)用,以及在探索過程中,培養(yǎng)學(xué)生實事求是、敢于質(zhì)疑的科學(xué)態(tài)度,同時合作交流中,開拓思維、提升能力?;谝陨侠砟?,本節(jié)課,我準(zhǔn)備引導(dǎo)學(xué)生采用自主探究、猜想驗證、合作探究的學(xué)習(xí)模式。體現(xiàn)“以學(xué)生的發(fā)展為本”這一教育理念。
五、說方法
本節(jié)課主要是通過教師的精心引導(dǎo)和點撥,學(xué)生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180度。
因為《課程標(biāo)準(zhǔn)》明確指出:“要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進行觀察,操作,猜想,培養(yǎng)學(xué)生初步的思維能力”。四年級學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導(dǎo)學(xué)生從“猜測――驗證”展開學(xué)習(xí)活動,讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。
六、說設(shè)計
根據(jù)我對教材的把握和對學(xué)情的了解,設(shè)計了4個環(huán)節(jié)展開教學(xué)。
一、創(chuàng)設(shè)情境,發(fā)現(xiàn)問題
小游戲:猜一猜藏在信封后面的是什么三角形。
師:我們在猜三角形的時候,看到一個直角,就能斷定它一定是直角三角形;看到一個鈍角,就能斷定他一定是鈍角三角形;但只看到一個銳角,就判斷不出來是哪種三角形。看來在一個三角形中,只能有一個直角或一個鈍角,為什么畫不出有兩個直角或兩個鈍角的三角形呢?
三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。
(創(chuàng)設(shè)的不是生活中的情境,而是數(shù)學(xué)化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現(xiàn)出學(xué)生在認知上的矛盾,學(xué)生用已經(jīng)學(xué)的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣"。這樣引入問題恰好可以利用學(xué)生的這種認知沖突,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生在疑問與猜想中尋找驗證的方法。)
教學(xué)進入第二環(huán)節(jié)——引導(dǎo)探究
二、動手操作,探究規(guī)律
1.介紹內(nèi)角、內(nèi)角和,并提出猜想
師:我們現(xiàn)在研究三角形的三個角,都是它的內(nèi)角。
課件演示:三角形的三個內(nèi)角
師:今天我們就來一起探究《三角形的內(nèi)角和》。猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。
2.確定研究范圍
師:研究三角形的內(nèi)角和,是不是應(yīng)該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學(xué)生反對)
請你想個辦法吧!
(通過引導(dǎo)學(xué)生分析,"研究哪幾類三角形,就能代表所有的三角形"這個問題,來滲透研究問題要全面,也就是完全歸納法的數(shù)學(xué)思想)
3.建立模型,解決問題
(一)測量法:
(1)學(xué)生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。
(2)教師要組織學(xué)生進行小組合作每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形)的三個內(nèi)角并計算出它們的總和是多少?
(3)記錄小組測量結(jié)果及討論結(jié)果
實驗名稱三角形內(nèi)角和
實驗?zāi)康奶骄咳切蝺?nèi)角和是多少度。
實驗材料尺子剪刀量角器銳角三角形紙片直角三角形紙片鈍角三角形紙片
方法一三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角的
方法二
我的發(fā)現(xiàn)
(4)學(xué)生匯報量的方法,師請同學(xué)評價這種方法。
師小結(jié):直接量的方法挺好,雖然測量有誤差,不準(zhǔn),但我們能知道,三角形的內(nèi)角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?
(二)剪拼法
學(xué)生匯報后師小結(jié):能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學(xué)生剪一剪、拼一拼)
師:把三角形的三個內(nèi)角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產(chǎn)生誤差,有時會差一點點,誰還有別的方法確定三角形的內(nèi)角和一定是180°?
(三)折拼法
學(xué)生匯報后師小結(jié):我們要研究三角形的內(nèi)角和,實際上就是想辦法把三角形的三個內(nèi)角湊到一起,像剪和折的方法,看三個內(nèi)角拼到一起是不是180度,都是借助我們學(xué)過的平角解決的問題。
這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學(xué)過的哪種圖形,想辦法說明三角形的內(nèi)角和一定是180度?
(四)演繹推理法
(借助學(xué)過的長方形,把一個長方形沿對角線分成兩個三角形。)
師:你認為這種方法好不好?我們看看是不是這么回事。
(演示課件:兩個完全相同的三角形內(nèi)角和等于360°,一個三角形內(nèi)角和等于180°)
師小結(jié):這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準(zhǔn)確的說明了三角形的內(nèi)角和一定是180度。
(學(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗,更重要的是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價值。)
學(xué)生用的方法會非常多,但它們的思維水平是不平行的。
直接測量法是學(xué)生利用已有的知識,測量出每個角的度數(shù),再用加法求和;
拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;
而演繹推理法,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考。
前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內(nèi)角和是原來長方形的四個內(nèi)角之和360度,所以一個三角形的內(nèi)角和就是360°÷2=180°,這種方法從科學(xué)證明的角度闡述了三角形的內(nèi)角和,它有嚴(yán)密性和精確性。
本節(jié)課引導(dǎo)學(xué)生經(jīng)歷從直觀到抽象、思維程度從低到高的過程,感悟數(shù)學(xué)的嚴(yán)謹性。讓學(xué)生在經(jīng)歷量和拼之后,逐漸會在思維發(fā)散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會發(fā)現(xiàn)一些新的規(guī)律。】
4.驗證猜想"三角形的內(nèi)角和是180度"
5.進一步感受
(1)三角形內(nèi)角和與三角形大小的關(guān)系
教師出示一個小三角形,問學(xué)生內(nèi)角和是多少度?再出示一個大的等腰三角形,問學(xué)生它的內(nèi)角和是多少度?把這個大三角形平均分成兩份,每份內(nèi)角和是多少度?你有什么發(fā)現(xiàn)嗎?
(2)三角形內(nèi)角和與三角形形狀的關(guān)系
(演示不斷變化的三角形。)仔細觀察,在這個過程中,什么變化了?什么沒變化?(三個角的度數(shù)都在變化,內(nèi)角和卻總是不變的)你有什么新發(fā)現(xiàn)嗎?
如果老師把一個角一直往下拽,猜一猜會怎樣?
(通過變化的三角形和三個內(nèi)角的數(shù)據(jù)顯示,進一步感受三角形的內(nèi)角和與三角形的形狀、大小都沒有關(guān)系;當(dāng)把三角形的一個角一直向下拽,這個角變成了一個180度的平角,另外兩個角變成了0度角,雖然已經(jīng)不再是三角形,也能從一個側(cè)面證明三角形的內(nèi)角和是180度,使學(xué)生感受到極限的思維方法。)
6.解釋課前問題
用內(nèi)角和的知識解釋課前的問題,為什么在三角形中不能有兩個直角或鈍角。
三、拓展應(yīng)用,深化創(chuàng)新
本節(jié)課的練習(xí)由易到難,設(shè)計成三個層次。
1、基本練習(xí)形成技能
2、變式練習(xí)鞏固技能
3、綜合練習(xí)發(fā)展提高技能
介紹科學(xué)家帕斯卡(出示帕斯卡的資料)
師:帕斯卡為科學(xué)作出了巨大的貢獻,在我們以后學(xué)習(xí)的知識中,也有很多是帕斯卡發(fā)現(xiàn)和驗證的,他12歲就發(fā)現(xiàn)三角形內(nèi)角和是180度,我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。
多邊形邊形內(nèi)角和
(設(shè)計求多邊形的內(nèi)角和,旨在把新問題轉(zhuǎn)化歸結(jié)為求幾個三角形內(nèi)角和的問題上,滲透化歸的數(shù)學(xué)學(xué)習(xí)方法。)
四、總結(jié)全課,全面提升
我們用三角形內(nèi)角和的知識知道了六邊形內(nèi)角和,那么五邊形、七邊形……這些多邊形的內(nèi)角和是多少度?有沒有什么規(guī)律可循,你能用學(xué)到的知識和方法去探究問題,相信你還會有一些精彩的發(fā)現(xiàn)。
七、說設(shè)計
三角形的內(nèi)角和是180度。
轉(zhuǎn)化的思想:量、撕、剪、折、拼
教學(xué)內(nèi)容:
義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)四年級下冊80~81頁的例1、例2
教學(xué)目標(biāo):
1、通過動手操作和觀察比較,使學(xué)生認識三角形,知道三角形的特性及三角形的高和底的含義,會在三角形內(nèi)畫高。
2、培養(yǎng)學(xué)生觀察、操作、自學(xué)的能力和應(yīng)用數(shù)學(xué)知識解決實際問題的能力。
3、體驗數(shù)學(xué)和生活的聯(lián)系,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點:
1、理解三角形的特性。
2、在三角形內(nèi)畫高。
教學(xué)難點:
理解三角形高和底的含義,會在三角形內(nèi)畫高。
教學(xué)準(zhǔn)備:
多媒體課件、投影。
教學(xué)過程:
一、談話引入。
師:我們學(xué)過哪些平面圖形?
師:說一說你對三角形有哪些認識?
師:同學(xué)們對三角形已經(jīng)有了初步的了解,這節(jié)課我們繼續(xù)研究和三角形有關(guān)的知識。
(板書課題:三角形的特性)
二、探究新知。
1、三角形的特征。
(1)畫一畫。
師:請你在紙上畫一個自己喜歡的三角形。并和同桌邊指邊說一說三角形有幾條邊?幾個角?幾個頂點?
師黑板上畫一個三角形,讓學(xué)生說出各部分的名稱師板書。(教師板書各部分名稱)
(2)擺一擺。
師:每根小棒相當(dāng)于一條線段。請你動手用三根小棒擺一個三角形。
找一學(xué)生上投影前擺一擺,并說一說是怎么擺的?
(3)看一看。
老師也擺了一個三角形,課件出示。
你們有什么看法?
教師用課件演示并強調(diào):有三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。
(4)找一找。
下面圖形中是三角形的請打√,不是三角形的請打×,并說出你的理由。(學(xué)生一起用手勢表示)
2、三角形的特性。
(1)動手操作發(fā)現(xiàn)三角形的特性。
師生拿出平行四邊形框架。
師:用手拉動,說一說有什么發(fā)現(xiàn)?(容易變形,不穩(wěn)定。)
指導(dǎo)學(xué)生操作:去掉一條邊,再扣上拼組成三角形框架。
師:再拉一拉有什么感覺?
師:想一想這說明三角形具備什么特性?(穩(wěn)定性)
(2)生活中尋找三角形的特性。
師:三角形的穩(wěn)定性在生活中的用處很大,你能舉個例子嗎?
課件出示例2的主題圖,請你找出各圖中哪有三角形?說一說它們有什么作用?
3、認識三角形的底和高。
(1)情境引入。
故事引入,兩個三角形爭論誰的個高。課件出示
讓學(xué)生說一說怎樣比較這兩個三角形的高,并準(zhǔn)備好相應(yīng)的兩個三角形學(xué)具試著讓學(xué)生前面來分別指一指它們的高,并比一比。
師:請你拿出(指銳角三角形)這樣一個三角形,試著指一指它的高。
(2)看書自學(xué)。
師:什么是三角形的高?怎樣正確的畫出三角形的高呢?請打開書81頁,看看書上是怎樣說的,又是怎樣畫的,和你的想法一樣嗎?
師:誰來說一說?
請你在剛才的三角形中畫出三角形的一條高,并標(biāo)出它所對應(yīng)的底。
(3)教師板演。
我把三角形的三個頂點分別用字母A、B、C表示,這個三角形可以稱作三角形ABC。想想怎樣以AC邊為底畫出這個三角形的高?
生說高的畫法,師板演,并強調(diào)用三角板畫高的方法。
(4)進一步認識三角形的高。
在三角形中標(biāo)上字母ABC,和同桌說一說剛才畫的高是以哪條邊為底畫的?
師:剛才我們畫了三角形的一組底和高,想一想一個三角形只有一組底和高嗎?為什么?
(三)應(yīng)用練習(xí)。
1、填空:
三角形有()個頂點,()條邊,()個角。
2、學(xué)校的椅子壞了,課件演示,怎樣加固它呢?(教材86頁第2題)
3、小明畫了三角形的一條高,你說他畫的對嗎?為什么?
(四)課堂小結(jié)。
通過這節(jié)課的學(xué)習(xí),你對三角形又有了哪些新的認識?
你還想了解和三角形有關(guān)的哪些知識?
【教學(xué)目標(biāo)】
教學(xué)知識點
1.等腰三角形的概念.
2.等腰三角形的性質(zhì).
3.等腰三角形的概念及性質(zhì)的應(yīng)用.
能力訓(xùn)練要求
1.經(jīng)歷作(畫)出等腰三角形的過程,從軸對稱的角度去體會等腰三角形的特點.
2.探索并掌握等腰三角形的性質(zhì).
情感與價值觀要求
通過學(xué)生的操作和思考,使學(xué)生掌握等腰三角形的相關(guān)概念,并在探究等腰三角形性質(zhì)的過程中培養(yǎng)學(xué)生認真思考的習(xí)慣.
【教學(xué)重難點】
重點:
1.等腰三角形的概念及性質(zhì).
2.等腰三角形性質(zhì)的應(yīng)用.
難點:等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.
【教學(xué)過程】
一、提出問題,創(chuàng)設(shè)情境
師:在前面的學(xué)習(xí)中,我們認識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡單平面圖形關(guān)于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設(shè)計一些美麗的圖案.這節(jié)課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?
[生]有的三角形是軸對稱圖形,有的三角形不是.
師:那什么樣的三角形是軸對稱圖形?
[生]滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.
師:很好,我們這節(jié)課就來認識一種成軸對稱圖形的三角形──等腰三角形.
二、探究新知:
(一)等腰三角形的定義:
【活動1】折紙、剪紙、展紙:
觀察△ABC的特點:(1)在上述過程中,△ABC被剪刀剪過的兩邊是否相等?
(2)由此你能說說什么是等腰三角形嗎?
歸納:有兩條邊相等的三角形叫等腰三角形。其中相等的兩條邊叫腰,另一條邊叫做底邊;兩腰所夾的角叫頂角,底邊和腰所夾的角叫底角。
(二)探索等腰三角形的性質(zhì):
【活動2】觀察△ABC:(1)等腰△ABC是軸對稱圖形嗎?它的對稱軸是什么?
(2)沿著等腰△ABC中AD所在的直線對折,找出重合的線段、重合的角。
歸納:性質(zhì)1、等腰三角形的兩個底角相等(簡寫成“等邊對等角”)
性質(zhì)2、等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(簡記為“三線合一”)
(三)等腰三角形性質(zhì)的證明:
由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì).同學(xué)們現(xiàn)在就動手來寫出這些證明過程.
一、說教材
1、教材的地位與作用
等腰三角形是在學(xué)習(xí)了軸對稱之后編排的,是軸對稱知識的延伸和應(yīng)用。等腰三角形的性質(zhì)及判定是探究線段相等、角相等及兩條直線互相垂直的重要工具,在教材中起著承上啟下的作用。
2、教學(xué)重點和難點
本著新課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我把探索等腰三角形的性質(zhì)定為本節(jié)課的重點,通過創(chuàng)設(shè)問題和解決問題來突出重點。把等腰三角形性質(zhì)的建立定為本課的難點,通過折紙實驗和小組合作探究來突破難點。
二、說教學(xué)目標(biāo)
1、學(xué)情分析
我所教的學(xué)生,從認知的特點來看,好奇愛問,求知欲強,想象力豐富;并已初步具有對數(shù)學(xué)問題進行合作探究的能力。
2、三維目標(biāo)
根據(jù)教材結(jié)構(gòu)和內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)、心理特征 ,我制定如下目標(biāo):
知識與技能目標(biāo):
了解等腰三角形的概念,探索并掌握等腰三角形的性質(zhì),并會進行有關(guān)的論證和計算,以及運用所學(xué)的知識去解決實際問題。
過程與方法目標(biāo):
通過對性質(zhì)的探究活動和例題的分析,培養(yǎng)學(xué)生多角度思考問題的習(xí)慣,提高學(xué)生分析問題和解決問題的能力;使學(xué)生進一步了解發(fā)現(xiàn)真理的方法(探究-猜想-歸納-論證)。
情感態(tài)度與價值觀目標(biāo):
通過對等腰三角形的觀察、試驗、歸納,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,數(shù)學(xué)就在我們身邊。在操作活動中,培養(yǎng)學(xué)生的合作精神,在獨立思考的同時能夠認同他人. 感受合作交流帶來的成功感,樹立自信心.
三、說教法與學(xué)法
1、教法
根據(jù)教材分析和目標(biāo)分析,我確定本課主要的教法為探究發(fā)現(xiàn)法。采用“問題情境—探索交流—猜想驗證——建立模型”的模式安排教學(xué),并在各個環(huán)節(jié)進行分層施教。
2、學(xué)法
我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中我特別重視學(xué)法的指導(dǎo)。本課采用小組合作的學(xué)習(xí)方式,讓學(xué)生遵循“觀察——猜想——歸納——驗證——反饋——實踐”的主線進行學(xué)習(xí)。
四、說教學(xué)流程
《數(shù)學(xué)課程標(biāo)準(zhǔn)》強調(diào),教師應(yīng)發(fā)揚教學(xué)民主,成為學(xué)生數(shù)學(xué)學(xué)習(xí)活動的組織者、引導(dǎo)者、合作者。因此本節(jié)課我分以下六個環(huán)節(jié)組織教學(xué)。
(一)創(chuàng)設(shè)情境,激發(fā)興趣。
1、多媒體展示房屋人字架、艾佛爾鐵塔、龍塔、香港中國銀行大廈的圖片,問:你認識圖片中的建筑物嗎?圖片中存在哪些幾何圖形? (等腰三角形、四邊形、梯形)
2、四幅圖中都有哪種幾何圖形?(等腰三角形)
(通過實例的電腦展示,喚起學(xué)生的好奇心,提出問題,引導(dǎo)學(xué)生進入新知識的學(xué)習(xí),創(chuàng)造一種探索的情景。在學(xué)習(xí)中,只有調(diào)動學(xué)生的非智力因素,特別是內(nèi)在動機,才能使他們產(chǎn)生強烈的求知欲和以飽滿的熱情來學(xué)習(xí)新知識。)
ァ(二) 觀察實物,形成概念。
活動1:學(xué)生通過觀察自帶的等腰三角形紙片認識等腰三角形的有關(guān)概念。
接著,我利用電腦演示等腰三角形定義的數(shù)學(xué)語言表達方式。
(讓學(xué)生歸納定義增強學(xué)生的成就感,給出數(shù)學(xué)語言的表達,是為了培養(yǎng)學(xué)生文字語言、圖形語言和符號語言的轉(zhuǎn)化能力.同時也能培養(yǎng)學(xué)生正向思維和逆向思維的能力。)
設(shè)計說明:本課的教學(xué)內(nèi)容是人教版三年制初二幾何5.4節(jié)三角形相似的判定。
在充分理解教材的基礎(chǔ)上,本節(jié)課首先在新舊知識的轉(zhuǎn)折處創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)的問題情境,引導(dǎo)學(xué)生通過探索、交流,獲得知識,促使學(xué)生在教師指導(dǎo)下生動活潑地、主動地、富有個性地學(xué)習(xí)。其次,根據(jù)變式分層的思想設(shè)計具有一定跨度的問題串,組織學(xué)生進行變式訓(xùn)練,有效地實施分層次教學(xué),使每個學(xué)生都得到充分的發(fā)展。
1 教學(xué)目標(biāo)
1.了解三角形相似的判定定理1的證明思路和方法, 能運用判定定理1解決有關(guān)問題;
2.掌握直角三角形被斜邊上的高分成的兩個直角三角形彼此相似并且都和原三角形相似;
3.學(xué)會與人合作,能與他人交流思維的過程和結(jié)果;形成評價與反思的意識;
4.能積極參與數(shù)學(xué)學(xué)習(xí)活動,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,形成實事求是的態(tài)度以及獨立思考的習(xí)慣。
2 教學(xué)重點和難點
重點是三角形相似的判定定理1及其應(yīng)用, 難點是定理的證明方法。突破難點的關(guān)鍵是在于使用化歸、全等變換、類比等數(shù)學(xué)思想方法。
3 教學(xué)、學(xué)法
本課采用“自主探索,合作交流”這一教學(xué)組織形式,首先從問題1入手,利用圖形變換的對比手法,引導(dǎo)學(xué)生步步深入, 類比歸納出判定兩個三角形相似的條件;然后通過一組變式題,保證學(xué)生在基礎(chǔ)知識和基本技能的獲得與一定的訓(xùn)練的同時,能感受到數(shù)學(xué)創(chuàng)造的樂趣,獲得對數(shù)學(xué)較為全面的體驗與理解。
4 教學(xué)過程
4.1 創(chuàng)設(shè)問題情景,引導(dǎo)學(xué)生探索導(dǎo)出新知識
4.1.1 問題討論 顯示問題1和問題2,組織學(xué)生分小組討論。
問題1:如圖1,已知∠1=∠B,試判斷△ADE與△ABC是否相似?并說明理由。
利用電腦課件改變DE的位置,保持∠1=∠B,得到問題2。
問題2:如圖2,已知∠1=∠B,試判斷△ADE與△ABC是否相似?并說明理由。
4.1.2 小組交流與同學(xué)交流自己的想法。
鼓勵學(xué)生在獨立思考的基礎(chǔ)上,積極參與數(shù)學(xué)問題的討論,勇于發(fā)表自己的觀點,能在傾聽別人意見的過程中,逐漸完善自己的想法,感受到與同伴交流中獲益的快樂。
教師積極引導(dǎo)學(xué)生利用化歸的思想解決問題,在學(xué)生充分討論的基礎(chǔ)上,對問題解決的方法小結(jié)如下:
(1)利用同位角相等,兩直線平行(∠1=∠B,DE∥BC )將問題1化歸到上節(jié)所學(xué)的定理;
(2)通過全等變換,將問題2化歸到問題1;
電腦三維動畫顯示:將△ADE繞著∠A的平分線旋轉(zhuǎn)180°(即將△ADE翻一面)可得到△AD′E′,(如圖3所示)即△AD′E′≌△ADE,于是有∠ADE=∠AD′E′,又因為∠ADE=∠B,所以∠AD′E′=∠B,由(1)得△ADE~△ABC。
(3)學(xué)生代表口述交流問題2證明的思路,教師板書證明過程;
(4)這里由特殊到一般來探索數(shù)學(xué)規(guī)律, 是數(shù)學(xué)研究中常用的一種思想方法。
4、導(dǎo)出定理:我們知道三角形全等是三角形相似的特殊情況, 在上述學(xué)習(xí)的基礎(chǔ)上,你能否類似于三角形全等用符合某種條件來判定兩個三角形相似?
學(xué)生口述三角形相似判定定理1,教師板書。
(二)變式訓(xùn)練,引導(dǎo)學(xué)生應(yīng)用新知識和進行創(chuàng)新性學(xué)習(xí)。
1.顯示習(xí)題1、習(xí)題2,供學(xué)生獨立思考后回答。
習(xí)題1如圖4,已知在△ABC中,AB=AC,∠A=36°,BD 平分∠ABC交AC于點D,請找出圖中的相似三角形。
習(xí)題2如圖5,在Rt△ABC中,∠ABC=90°,BD⊥AC于點D, 找出圖中所有的相似三角形。
2.教師歸納小結(jié):
(1)習(xí)題1利用簡單計算,直接運用判定定理1便可找出△ABC~△BDC;
(2)習(xí)題2與習(xí)題1的解題方法一樣,但要求全面觀察圖形, 圖中共有三對三角形相似,即直角三角形被斜邊上的高分成的兩個直角三角形相似。
3.電腦顯示習(xí)題3,學(xué)生獨立練習(xí)后,小組交流,教師歸納小結(jié)。
習(xí)題3如圖6,在△ABC中,點D為AC邊上的一點,連結(jié)BD, 問∠ADB滿足什么條件時,△ADB~△ABC。
4.電腦顯示將圖6中的△ADB繞點A旋轉(zhuǎn)一定的角度,得到習(xí)題4。
習(xí)題4 如圖7,已知∠D′=∠B,∠1=∠2,求證:△AD′B′~△ABC。
5.讓學(xué)生在習(xí)題4的基礎(chǔ)上改編一道變式題,課后交流。
這個問題的參與性較強,每個學(xué)生都可以展開想象的翅膀,按照自己思考的設(shè)計原則,編擬題目(如改變條件:將∠D′=∠B改成∠B′=∠C,結(jié)論不變;也可以將圖形不變;也可以將圖形變?yōu)槿鐖D8所示),感受數(shù)學(xué)創(chuàng)造的樂趣,增進學(xué)好數(shù)學(xué)的信心,獲得對數(shù)學(xué)較為全面的體驗與理解。
(三)師生共同作本節(jié)果小結(jié)。
作者介紹:鄭碧星,福建德化第一中學(xué)
老師們:
你們好!
非常高興能有機會和大家交流說課活動,謹此向在座的各位老師學(xué)習(xí)。
今天我說課的內(nèi)容是人教版數(shù)學(xué)八年級上冊第十四章第3節(jié)《等腰三角形》的第一課時,下面我將從教材分析、教學(xué)方法與教材處理及教學(xué)過程等幾個方面對本課的設(shè)計進行說明。
一、 教材分析
等腰三角形是一種特殊的三角形,它除了具備有一般三角形的所有性質(zhì)外,還有許多特殊的性質(zhì),由于它的這些特殊的性質(zhì),使它比一般的三角形應(yīng)用更廣泛,而等腰三角形的許多特殊性質(zhì),又都和它是軸對稱圖形有關(guān),它也是證明兩個角相等,兩條線段相等,兩條直線互相垂直的方法,學(xué)好它可以為將來初三解決代數(shù)、幾何綜合題打下良好的基礎(chǔ)。它在理論上有這樣重要的地位,并在實際生活中也有廣泛的應(yīng)用,因此這節(jié)課的教學(xué)顯得相當(dāng)重要。根據(jù)本班學(xué)生的特點我確定如下:
(一)教學(xué)目標(biāo):
1、知識與技能:能夠探究,歸納,驗證等腰三角形的性質(zhì),并學(xué)會應(yīng)用等腰三角形的性質(zhì)
2、過程與方法:經(jīng)歷剪紙,折紙等探究活動,進一步認識等腰三角形的定義和性質(zhì),了解等腰三角形是軸對稱圖形。
3、情感態(tài)度與價值觀:培養(yǎng)學(xué)生的觀察能力,激發(fā)學(xué)生的好奇心和求知欲,培養(yǎng)學(xué)習(xí)的自信心
(二)教學(xué)重點與難點
等腰三角形性質(zhì)的探索和應(yīng)用是本節(jié)課的重點。由于初二學(xué)生的幾何知識有限,而本節(jié)課性質(zhì)的證明又添加了輔助線,所以等腰三角形性質(zhì)的驗探究是本節(jié)課的難點。
二、教學(xué)方法
本節(jié)課中我遵循教師為主導(dǎo),學(xué)生為主體的原則,針對當(dāng)前學(xué)生的厭學(xué)情緒,我運用課件,實物演示等多種教學(xué)手段激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感到容易學(xué),采用創(chuàng)設(shè)情景、實驗法來分散難點讓學(xué)生感到愿意學(xué),并設(shè)置適當(dāng)?shù)淖穯?、探究,讓學(xué)生來主宰課堂,成為學(xué)習(xí)的主人。
三、學(xué)法指導(dǎo)及能力培養(yǎng)
人教版數(shù)學(xué)八年級上冊(等腰三角形),標(biāo)簽:初二數(shù)學(xué)說課稿,初中數(shù)學(xué)說課視頻,
好的學(xué)習(xí)方法才能培養(yǎng)能力,在學(xué)生探索知識的過程中培養(yǎng)他們掌握好的學(xué)習(xí)和解題方法,并且通過自己動手操作、動腦思考、動口表述,培養(yǎng)學(xué)生的觀察、猜想、概括、表述論證的能力
四、教學(xué)過程
(一)情景設(shè)置
首先我用一個三角形測平架,測量黑板的下邊是否水平,并讓學(xué)生猜想其中的道理和奧妙,這樣的引入既明確了本節(jié)課的主要內(nèi)容,也激發(fā)了學(xué)生的學(xué)習(xí)興趣,又使學(xué)生了解到數(shù)學(xué)來源于生活又適用于生活。
教育學(xué)中有句諺語:“告訴我我會忘記,做給我看我會記得,讓我去做我才會懂”,由此可見實驗法在教學(xué)中具有重要的作用。因此我設(shè)計了一個動手操作的環(huán)節(jié),讓學(xué)生按要求剪出一個三角形,為下面折紙操作作好鋪墊,結(jié)合剪出的等腰三角形學(xué)習(xí)相關(guān)的概念加深印象,并指明等腰三角形是軸對稱圖形。
(二)探索新知
在這個環(huán)節(jié)我安排了兩個探究,通過折紙的方法猜想并歸納。首先通過折紙讓學(xué)生猜想∠B和∠C有什么關(guān)系?鼓勵學(xué)生用多種方法來驗證他們的猜想,并歸納出等腰三角形的第一條性質(zhì)。這個地方我設(shè)計一個疑問,來強調(diào)等邊對等角有一個前提條件就必須是在同一個三角形中,為了保證學(xué)生思維的連貫性,在這里我是這樣引入探究二的,“從剛才輔助線的作法中,你發(fā)現(xiàn)了什么?”讓學(xué)生感覺到這三條輔助線好像是一條線段,然后在通過折紙歸納出性質(zhì)二。
學(xué)生在長時間的學(xué)習(xí)和探究中大腦已感到疲勞,隨即引出課前設(shè)置的疑問,再次激發(fā)學(xué)生的學(xué)習(xí)熱情。由于“三線合一”的性質(zhì)在描述上經(jīng)常出錯,所以我設(shè)置了一個辨析,然后用填空的形式規(guī)范“三線合一”的符號表示形式,讓學(xué)生理解性質(zhì)的內(nèi)涵。
(三)鞏固練習(xí)
我用兩個練習(xí)鞏固等腰三角形的性質(zhì)并讓學(xué)生體驗分類討論的思想在解題中的應(yīng)用。由于本節(jié)課的例題較難,因此我對它進行了改編,先讓學(xué)生解決“等腰三角形一個底角的外角是108°時,三個內(nèi)角分別是多少度?”然后再延長CD,得到一個新的等腰三角形,運用性質(zhì)一就可以解決這兩個問題,然后今天的例題就可以迎刃而解了,同時也要強調(diào)此題圖形的特殊性,只有頂角是36°的等腰三角形才能滿足這樣的性質(zhì)。
(四)課堂小結(jié)
課堂教學(xué),一是注重引入激發(fā)興趣,二是注重教學(xué)過程、重視方法,三就是注重概括總結(jié)。首先我讓學(xué)生回想一下本節(jié)課的內(nèi)容,“通過本節(jié)課的學(xué)習(xí),你對等腰三角形有什么新的認識嗎?”然后教師肯定學(xué)生的積極性。
(五)作業(yè)布置(略)
人教版數(shù)學(xué)八年級上冊(等腰三角形),標(biāo)簽:初二數(shù)學(xué)說課稿,初中數(shù)學(xué)說課視頻,
(六)板書設(shè)計(略)
總之,在整個教學(xué)過程中,我遵循著“教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線”的原則,在課上的每個環(huán)節(jié)中通過各種媒體,各種手段,始終注重興趣的激發(fā),培養(yǎng)學(xué)生的學(xué)習(xí)熱情,讓他們在輕松愉快中學(xué)習(xí)知識。
以上是我對這節(jié)課的教學(xué)設(shè)計,望各位老師批評指正,謝謝!
感謝您閱讀“幼兒教師教育網(wǎng)”的《三角形的課件教案(精選10篇)》一文,希望能解決您找不到幼兒園教案時遇到的問題和疑惑,同時,yjs21.com編輯還為您精選準(zhǔn)備了三角形課件教案專題,希望您能喜歡!
相關(guān)推薦
經(jīng)驗時常告訴我們,做事要提前做好準(zhǔn)備。幼兒園的老師都希望自己講的課學(xué)生們愛聽,能學(xué)習(xí)的更好,大部分老師為了讓學(xué)生學(xué)的更好都會事先準(zhǔn)備好教案,教案可以讓上課自己輕松的同時,學(xué)生也更好的消化課堂內(nèi)容。你知道如何去寫好一份優(yōu)秀的幼兒園教案呢?在這里,你不妨讀讀三角形的教案精選7篇,供大家借鑒和使用,希望大...
以下是由欄目小編為您帶來的等腰三角形教案。教案課件是老師上課做的提前準(zhǔn)備,這就需要我們老師自己抽時間去完成。寫好教案課件,可以避免重中之重被遺漏。還希望您能從本網(wǎng)頁有所收獲!...
一名愛崗敬業(yè)的教師要充分考慮學(xué)生的理解性,教師應(yīng)當(dāng)在課堂開始前備好教案。一篇優(yōu)秀的教案方便教師的使用,能提高教學(xué)效率。那么寫教案需要注意哪些問題呢?經(jīng)過整理,幼兒教師教育網(wǎng)的編輯為你呈上最新小學(xué)數(shù)學(xué)三角形教案,歡迎你收藏本站,并關(guān)注網(wǎng)站更新!...
作為一名合格的幼兒園老師,說課稿是我們工作中的一部分,持著每一堂課對每位學(xué)生都要盡職盡責(zé)的態(tài)度,我們會準(zhǔn)備一份生動有趣的說課稿,說課稿有利于老師在課堂上與學(xué)生更好的交流。如何突出重點來寫幼兒園說課稿呢?小編收集并整理了“精選相似三角形說課稿”,僅供您在工作和學(xué)習(xí)中參考。 各位老師:大家好!下面我就我...
教案課件是每個老師在開學(xué)前需要準(zhǔn)備的東西,每個老師對于寫教案課件都不陌生。寫好教案,完整課堂教學(xué)不再是夢,網(wǎng)絡(luò)有沒有優(yōu)質(zhì)的教案課件以資借鑒呢?幼兒教師教育網(wǎng)特別編輯了“解直角三角形教案”,有需要的朋友就來看看吧!...
最新更新