高中數(shù)學(xué)教案。
作為一個(gè)好的老師,提前備好教案和課件是非常重要的,因?yàn)檫@對(duì)于學(xué)生們來(lái)說(shuō)是很關(guān)鍵的,他們需要一個(gè)生動(dòng)有趣的課堂來(lái)保持專(zhuān)注。此外,每份課件都需要設(shè)計(jì)得更加完善,這需要老師投入更多的心思和精力。教案是對(duì)學(xué)生學(xué)習(xí)課程內(nèi)容及教學(xué)方法進(jìn)行的綜合分析和總結(jié),在教學(xué)中起到了非常重要的作用。幼兒教師教育網(wǎng)的編輯在這里為大家寫(xiě)了一篇“高中數(shù)學(xué)教案”的內(nèi)容,希望可以為你提供一些幫助。如果你覺(jué)得這篇文章有意義,請(qǐng)務(wù)必收藏一下哦!
一、學(xué)情分析
本節(jié)課是在學(xué)生已學(xué)知識(shí)的基礎(chǔ)上進(jìn)行展開(kāi)學(xué)習(xí)的,也是對(duì)以前所學(xué)知識(shí)的鞏固和發(fā)展,但對(duì)學(xué)生的知識(shí)準(zhǔn)備情況來(lái)看,學(xué)生對(duì)相關(guān)基礎(chǔ)知識(shí)掌握情況是很好,所以在復(fù)習(xí)時(shí)要及時(shí)對(duì)學(xué)生相關(guān)知識(shí)進(jìn)行提問(wèn),然后開(kāi)展對(duì)本節(jié)課的鞏固性復(fù)習(xí)。而本節(jié)課學(xué)生會(huì)遇到的困難有:數(shù)軸、坐標(biāo)的表示;平面向量的坐標(biāo)表示;平面向量的坐標(biāo)運(yùn)算。
二、考綱要求
1.會(huì)用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn)算.
2.理解用坐標(biāo)表示的平面向量共線的條件.
3.掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算.
4.能用坐標(biāo)表示兩個(gè)向量的夾角,理解用坐標(biāo)表示的平面向量垂直的條件.
三、教學(xué)過(guò)程
(一) 知識(shí)梳理:
1.向量坐標(biāo)的求法
(1)若向量的起點(diǎn)是坐標(biāo)原點(diǎn),則終點(diǎn)坐標(biāo)即為向量的坐標(biāo).
(2)設(shè)A(x1,y1),B(x2,y2),則
=_________________
| |=_______________
(二)平面向量坐標(biāo)運(yùn)算
1.向量加法、減法、數(shù)乘向量
設(shè) =(x1,y1), =(x2,y2),則
+ = - = λ = .
2.向量平行的坐標(biāo)表示
設(shè) =(x1,y1), =(x2,y2),則 ∥ ?________________.
(三)核心考點(diǎn)·習(xí)題演練
考點(diǎn)1.平面向量的坐標(biāo)運(yùn)算
例1.已知A(-2,4),B(3,-1),C(-3,-4).設(shè) (1)求3 + -3 ;
(2)求滿足 =m +n 的實(shí)數(shù)m,n;
練:(2015江蘇,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)
(m,n∈R),則m-n的值為.
考點(diǎn)2平面向量共線的坐標(biāo)表示
例2:平面內(nèi)給定三個(gè)向量 =(3,2), =(-1,2), =(4,1)
若( +k )∥(2 - ),求實(shí)數(shù)k的值;
練:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ為實(shí)數(shù),( +λ )∥ ,則λ= ()
思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?
方法總結(jié):
1.向量共線的兩種表示形式
設(shè)a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪種形式,應(yīng)視題目的具體條件而定,一般情況涉及坐標(biāo)的應(yīng)用②.
2.兩向量共線的充要條件的作用
判斷兩向量是否共線(平行的問(wèn)題;另外,利用兩向量共線的充要條件可以列出方程(組),求出未知數(shù)的值.
考點(diǎn)3平面向量數(shù)量積的坐標(biāo)運(yùn)算
例3“已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E是AB邊上的動(dòng)點(diǎn),
則 的值為; 的值為.
【提示】解決涉及幾何圖形的向量數(shù)量積運(yùn)算問(wèn)題時(shí),可建立直角坐標(biāo)系利用向量的數(shù)量積的坐標(biāo)表示來(lái)運(yùn)算,這樣可以使數(shù)量積的運(yùn)算變得簡(jiǎn)捷.
練:(2014,安徽,13)設(shè) =(1,2), =(1,1), = +k .若 ⊥ ,則實(shí)數(shù)k的值等于()
【思考】?jī)煞橇阆蛄?⊥ 的充要條件: · =0?.
解題心得:
(1)當(dāng)已知向量的坐標(biāo)時(shí),可利用坐標(biāo)法求解,即若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2.
(2)解決涉及幾何圖形的向量數(shù)量積運(yùn)算問(wèn)題時(shí),可建立直角坐標(biāo)系利用向量的數(shù)量積的坐標(biāo)表示來(lái)運(yùn)算,這樣可以使數(shù)量積的運(yùn)算變得簡(jiǎn)捷.
(3)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.
考點(diǎn)4:平面向量模的坐標(biāo)表示
例4:(2015湖南,理8)已知點(diǎn)A,B,C在圓x2+y2=1上運(yùn)動(dòng),且AB⊥BC,若點(diǎn)P的坐標(biāo)為(2,0),則 的值為()
A.6 B.7 C.8 D.9
練:(2016,上海,12)
在平面直角坐標(biāo)系中,已知A(1,0),B(0,-1),P是曲線上一個(gè)動(dòng)點(diǎn),則 的取值范圍是?
解題心得:
求向量的模的方法:
(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的運(yùn)算轉(zhuǎn)化為數(shù)量積運(yùn)算;
(2)幾何法,利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解..
五、課后作業(yè)(課后習(xí)題1、2題)
一、課程性質(zhì)與任務(wù)
數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類(lèi)文化的重要組成部分。數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門(mén)公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識(shí),具備必需的相關(guān)技能與能力,為學(xué)習(xí)專(zhuān)業(yè)知識(shí)、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。二、課程教學(xué)目標(biāo)
1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識(shí)。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問(wèn)題能力和數(shù)學(xué)思維能力。
3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識(shí)、創(chuàng)新意識(shí)和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。三、教學(xué)內(nèi)容結(jié)構(gòu)
本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。
1.基礎(chǔ)模塊是各專(zhuān)業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專(zhuān)業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。
3.拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。四、教學(xué)內(nèi)容與要求
(一)本大綱教學(xué)要求用語(yǔ)的表述1.認(rèn)知要求(分為三個(gè)層次)
了解:初步知道知識(shí)的含義及其簡(jiǎn)單應(yīng)用。
理解:懂得知識(shí)的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識(shí)的聯(lián)系。掌握:能夠應(yīng)用知識(shí)的概念、定義、定理、法則去解決一些問(wèn)題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)
計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對(duì)數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢(shì),數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。
空間想象能力:依據(jù)文字、語(yǔ)言描述,或較簡(jiǎn)單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫(huà)出圖形。
分析與解決問(wèn)題能力:能對(duì)工作和生活中的簡(jiǎn)單數(shù)學(xué)相關(guān)問(wèn)題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。
數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識(shí),運(yùn)用類(lèi)比、歸納、綜合等方法,對(duì)數(shù)學(xué)及其應(yīng)用問(wèn)題能進(jìn)行有條理的思考、判斷、推理和求解;針對(duì)不同的問(wèn)題(或需求),會(huì)選擇合適的模型(模式)。
(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))
第2單元不等式(8學(xué)時(shí))
第3單元函數(shù)(12學(xué)時(shí))
第4單元指數(shù)函數(shù)與對(duì)數(shù)函數(shù)(12學(xué)時(shí))
第5單元三角函數(shù)(18學(xué)時(shí))
第6單元數(shù)列(10學(xué)時(shí))
第7單元平面向量(矢量)(10學(xué)時(shí))
第8單元直線和圓的方程(18學(xué)時(shí))
第9單元立體幾何(14學(xué)時(shí))
第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))
2.職業(yè)模塊
第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))
第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))
第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))
【考綱要求】
了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡(jiǎn)單性質(zhì)。
【自學(xué)質(zhì)疑】
1.雙曲線 的 軸在 軸上, 軸在 軸上,實(shí)軸長(zhǎng)等于 ,虛軸長(zhǎng)等于 ,焦距等于 ,頂點(diǎn)坐標(biāo)是 ,焦點(diǎn)坐標(biāo)是 ,
漸近線方程是 ,離心率 ,若點(diǎn) 是雙曲線上的點(diǎn),則 , 。
2.又曲線 的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是
3.經(jīng)過(guò)兩點(diǎn) 的雙曲線的標(biāo)準(zhǔn)方程是 。
4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。
5.與雙曲線 有公共的漸近線,且經(jīng)過(guò)點(diǎn) 的雙曲線的方程為
【例題精講】
1.雙曲線的離心率等于 ,且與橢圓 有公共焦點(diǎn),求該雙曲線的方程。
2.已知橢圓具有性質(zhì):若 是橢圓 上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn) 是橢圓上任意一點(diǎn),當(dāng)直線 的斜率都存在,并記為 時(shí),那么 之積是與點(diǎn) 位置無(wú)關(guān)的定值,試對(duì)雙曲線 寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明。
3.設(shè)雙曲線 的半焦距為 ,直線 過(guò) 兩點(diǎn),已知原點(diǎn)到直線 的距離為 ,求雙曲線的離心率。
【矯正鞏固】
1.雙曲線 上一點(diǎn) 到一個(gè)焦點(diǎn)的距離為 ,則它到另一個(gè)焦點(diǎn)的距離為 。
2.與雙曲線 有共同的漸近線,且經(jīng)過(guò)點(diǎn) 的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是 。
3.若雙曲線 上一點(diǎn) 到它的右焦點(diǎn)的距離是 ,則點(diǎn) 到 軸的距離是
4.過(guò)雙曲線 的左焦點(diǎn) 的直線交雙曲線于 兩點(diǎn),若 。則這樣的直線一共有 條。
【遷移應(yīng)用】
1. 已知雙曲線 的焦點(diǎn)到漸近線的距離是其頂點(diǎn)到漸近線距離的2倍,則該雙曲線的離心率
2. 已知雙曲線 的焦點(diǎn)為 ,點(diǎn) 在雙曲線上,且 ,則點(diǎn) 到 軸的距離為 。
3. 雙曲線 的焦距為
4. 已知雙曲線 的一個(gè)頂點(diǎn)到它的一條漸近線的距離為 ,則
5. 設(shè) 是等腰三角形, ,則以 為焦點(diǎn)且過(guò)點(diǎn) 的雙曲線的離心率為 .
6. 已知圓 。以圓 與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件的雙曲線的標(biāo)準(zhǔn)方程為
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
一、知識(shí)與技能
(1)理解并掌握弧度制的定義;(2)領(lǐng)會(huì)弧度制定義的合理性;(3)掌握并運(yùn)用弧度制表示的弧長(zhǎng)公式、扇形面積公式;(4)熟練地進(jìn)行角度制與弧度制的換算;(5)角的集合與實(shí)數(shù)集之間建立的一一對(duì)應(yīng)關(guān)系.(6)使學(xué)生通過(guò)弧度制的學(xué)習(xí),理解并認(rèn)識(shí)到角度制與弧度制都是對(duì)角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.
二、過(guò)程與方法
創(chuàng)設(shè)情境,引入弧度制度量角的大小,通過(guò)探究理解并掌握弧度制的定義,領(lǐng)會(huì)定義的合理性.根據(jù)弧度制的定義推導(dǎo)并運(yùn)用弧長(zhǎng)公式和扇形面積公式.以具體的實(shí)例學(xué)習(xí)角度制與弧度制的互化,能正確使用計(jì)算器.
三、情態(tài)與價(jià)值
通過(guò)本節(jié)的學(xué)習(xí),使同學(xué)們掌握另一種度量角的單位制---弧度制,理解并認(rèn)識(shí)到角度制與弧度制都是對(duì)角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.角的概念推廣以后,在弧度制下,角的集合與實(shí)數(shù)集之間建立了一一對(duì)應(yīng)關(guān)系:即每一個(gè)角都有的一個(gè)實(shí)數(shù)(即這個(gè)角的弧度數(shù))與它對(duì)應(yīng);反過(guò)來(lái),每一個(gè)實(shí)數(shù)也都有的一個(gè)角(即弧度數(shù)等于這個(gè)實(shí)數(shù)的角)與它對(duì)應(yīng),為下一節(jié)學(xué)習(xí)三角函數(shù)做好準(zhǔn)備.
教學(xué)重難點(diǎn)
重點(diǎn):理解并掌握弧度制定義;熟練地進(jìn)行角度制與弧度制地互化換算;弧度制的運(yùn)用.
難點(diǎn):理解弧度制定義,弧度制的運(yùn)用.
教學(xué)工具
投影儀等
教學(xué)過(guò)程
一、創(chuàng)設(shè)情境,引入新課
師:有人問(wèn):??诘饺齺営卸噙h(yuǎn)時(shí),有人回答約250公里,但也有人回答約160英里,請(qǐng)問(wèn)那一種回答是正確的?(已知1英里=1.6公里)
顯然,兩種回答都是正確的,但為什么會(huì)有不同的數(shù)值呢?那是因?yàn)樗捎玫亩攘恐撇煌?,一個(gè)是公里制,一個(gè)是英里制.他們的長(zhǎng)度單位是不同的,但是,他們之間可以換算:1英里=1.6公里.
在角度的度量里面,也有類(lèi)似的情況,一個(gè)是角度制,我們已經(jīng)不再陌生,另外一個(gè)就是我們這節(jié)課要研究的角的另外一種度量制---弧度制.
二、講解新課
1.角度制規(guī)定:將一個(gè)圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.
弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請(qǐng)看課本,自行解決上述問(wèn)題.
2.弧度制的定義
長(zhǎng)度等于半徑長(zhǎng)的圓弧所對(duì)的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫(xiě)).
(師生共同活動(dòng))探究:如圖,半徑為的圓的圓心與原點(diǎn)重合,角的終邊與軸的正半軸重合,交圓于點(diǎn),終邊與圓交于點(diǎn).請(qǐng)完成表格.
我們知道,角有正負(fù)零角之分,它的弧度數(shù)也應(yīng)該有正負(fù)零之分,如-π,-2π等等,一般地,正角的弧度數(shù)是一個(gè)正數(shù),負(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù),零角的弧度數(shù)是0,角的正負(fù)主要由角的旋轉(zhuǎn)方向來(lái)決定.
角的概念推廣以后,在弧度制下,角的集合與實(shí)數(shù)集R之間建立了一一對(duì)應(yīng)關(guān)系:即每一個(gè)角都有的一個(gè)實(shí)數(shù)(即這個(gè)角的弧度數(shù))與它對(duì)應(yīng);反過(guò)來(lái),每一個(gè)實(shí)數(shù)也都有的一個(gè)角(即弧度數(shù)等于這個(gè)實(shí)數(shù)的角)與它對(duì)應(yīng).
四、課堂小結(jié)
度數(shù)與弧度數(shù)的換算也可借助“計(jì)算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運(yùn)算時(shí),“弧度”二字和單位符號(hào)“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無(wú)論用角度制還是弧度制都能在角的集合與實(shí)數(shù)的集合之間建立一種一一對(duì)應(yīng)的關(guān)系。
五、作業(yè)布置
作業(yè):習(xí)題1.1A組第7,8,9題.
課后小結(jié)
度數(shù)與弧度數(shù)的換算也可借助“計(jì)算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運(yùn)算時(shí),“弧度”二字和單位符號(hào)“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無(wú)論用角度制還是弧度制都能在角的集合與實(shí)數(shù)的集合之間建立一種一一對(duì)應(yīng)的關(guān)系。
課后習(xí)題
作業(yè):習(xí)題1.1A組第7,8,9題.
板書(shū)
教學(xué)目標(biāo)
(1)正確理解排列的意義。能利用樹(shù)形圖寫(xiě)出簡(jiǎn)單問(wèn)題的所有排列;
(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問(wèn)題,寫(xiě)出符合要求的排列;
(3)掌握排列數(shù)公式,并能根據(jù)具體的問(wèn)題,寫(xiě)出符合要求的排列數(shù);
(4)會(huì)分析與數(shù)字有關(guān)的排列問(wèn)題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;
(5)通過(guò)對(duì)排列應(yīng)用問(wèn)題的學(xué)習(xí),讓學(xué)生通過(guò)對(duì)具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
二、重點(diǎn)難點(diǎn)分析
本小節(jié)的重點(diǎn)是排列的定義、排列數(shù)及排列數(shù)的公式,并運(yùn)用這個(gè)公式去解決有關(guān)排列數(shù)的應(yīng)用問(wèn)題。難點(diǎn)是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點(diǎn)、難點(diǎn)的關(guān)鍵是對(duì)加法原理和乘法原理的掌握和運(yùn)用,并將這兩個(gè)原理的基本思想方法貫穿在解決排列應(yīng)用問(wèn)題當(dāng)中。
從n個(gè)不同元素中任取m(m≤n)個(gè)元素,按照一定的順序排成一列,稱為從n個(gè)不同元素中任取m個(gè)元素的一個(gè)排列。因此,兩個(gè)相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個(gè)不同元素中任取m(m≤n)個(gè)元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計(jì)算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個(gè)概念,前者是具有m個(gè)元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個(gè)元素的有限集中取出m個(gè)組成的有序集,相當(dāng)于一個(gè)排列,而這種有序集的個(gè)數(shù),就是相應(yīng)的排列數(shù)。
公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來(lái)講解。要重點(diǎn)分析好的推導(dǎo)。
排列的應(yīng)用題是本節(jié)教材的難點(diǎn),通過(guò)本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問(wèn)題的能力。
在分析應(yīng)用題的解法時(shí),教材上先畫(huà)出框圖,然后分析逐次填入時(shí)的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時(shí)也應(yīng)盡量采用。
在教學(xué)排列應(yīng)用題時(shí),開(kāi)始應(yīng)要求學(xué)生寫(xiě)解法要有簡(jiǎn)要的文字說(shuō)明,防止單純的只寫(xiě)一個(gè)排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問(wèn)題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。
三、教法建議
①在講解排列數(shù)的概念時(shí),要注意區(qū)分“排列數(shù)”與“一個(gè)排列”這兩個(gè)概念。一個(gè)排列是指“從n個(gè)不同元素中,任取出m個(gè)元素,按照一定的順序擺成一排”,它不是一個(gè)數(shù),而是具體的一件事;排列數(shù)是指“從n個(gè)不同元素中取出m個(gè)元素的所有排列的個(gè)數(shù)”,它是一個(gè)數(shù)。例如,從3個(gè)元素a,b,c中每次取出2個(gè)元素,按照一定的順序排成一排,有如下幾種:
ab,ac,ba,bc,ca,cb,
其中每一種都叫一個(gè)排列,共有6種,而數(shù)字6就是排列數(shù),符號(hào)表示排列數(shù)。
②排列的定義中包含兩個(gè)基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。
從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時(shí),才是同一個(gè)排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。
在定義中“一定順序”就是說(shuō)與位置有關(guān),在實(shí)際問(wèn)題中,要由具體問(wèn)題的性質(zhì)和條件來(lái)決定,這一點(diǎn)要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別。
在排列的定義中,如果有的書(shū)上叫選排列,如果,此時(shí)叫全排列。
要特別注意,不加特殊說(shuō)明,本章不研究重復(fù)排列問(wèn)題。
③關(guān)于排列數(shù)公式的推導(dǎo)的教學(xué)。公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來(lái)講解。課本上用的是不完全歸納法,先推導(dǎo),,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的。
導(dǎo)出公式后要分析這個(gè)公式的構(gòu)成特點(diǎn),以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“m”比較復(fù)雜的時(shí)候把公式寫(xiě)錯(cuò)。這個(gè)公式的特點(diǎn)可見(jiàn)課本第229頁(yè)的一段話:“其中,公式右邊第一個(gè)因數(shù)是n,后面每個(gè)因數(shù)都比它前面一個(gè)因數(shù)少1,最后一個(gè)因數(shù)是,共m個(gè)因數(shù)相乘?!边@實(shí)際是講三個(gè)特點(diǎn):第一個(gè)因數(shù)是什么?最后一個(gè)因數(shù)是什么?一共有多少個(gè)連續(xù)的自然數(shù)相乘。
公式是在引出全排列數(shù)公式后,將排列數(shù)公式變形后得到的公式。對(duì)這個(gè)公式指出兩點(diǎn):
(1)在一般情況下,要計(jì)算具體的排列數(shù)的值,常用前一個(gè)公式,而要對(duì)含有字母的排列數(shù)的式子進(jìn)行變形或作有關(guān)的論證,要用到這個(gè)公式,教材中第230頁(yè)例2就是用這個(gè)公式證明的問(wèn)題;
(2)為使這個(gè)公式在時(shí)也能成立,規(guī)定,如同時(shí)一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。
④建議應(yīng)充分利用樹(shù)形圖對(duì)問(wèn)題進(jìn)行分析,這樣比較直觀,便于理解。
⑤學(xué)生在開(kāi)始做排列應(yīng)用題的作業(yè)時(shí),應(yīng)要求他們寫(xiě)出解法的簡(jiǎn)要說(shuō)明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實(shí)。隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求。
一、教學(xué)內(nèi)容分析
向量作為工具在數(shù)學(xué)、物理以及實(shí)際生活中都有著廣泛的應(yīng)用.
本小節(jié)的重點(diǎn)是結(jié)合向量知識(shí)證明數(shù)學(xué)中直線的平行、垂直問(wèn)題,以及不等式、三角公式的證明、物理學(xué)中的應(yīng)用.
二、教學(xué)目標(biāo)設(shè)計(jì)
1、通過(guò)利用向量知識(shí)解決不等式、三角及物理問(wèn)題,感悟向量作為一種工具有著廣泛的應(yīng)用,體會(huì)從不同角度去看待一些數(shù)學(xué)問(wèn)題,使一些數(shù)學(xué)知識(shí)有機(jī)聯(lián)系,拓寬解決問(wèn)題的思路.
2、了解構(gòu)造法在解題中的運(yùn)用.
三、教學(xué)重點(diǎn)及難點(diǎn)
重點(diǎn):平面向量知識(shí)在各個(gè)領(lǐng)域中應(yīng)用.
難點(diǎn):向量的構(gòu)造.
四、教學(xué)流程設(shè)計(jì)
五、教學(xué)過(guò)程設(shè)計(jì)
一、復(fù)習(xí)與回顧
1、提問(wèn):下列哪些量是向量?
(1)力 (2)功 (3)位移 (4)力矩
2、上述四個(gè)量中,(1)(3)(4)是向量,而(2)不是,那它是什么?
[說(shuō)明]復(fù)習(xí)數(shù)量積的有關(guān)知識(shí).
二、學(xué)習(xí)新課
例1(書(shū)中例5)
向量作為一種工具,不僅在物理學(xué)科中有廣泛的應(yīng)用,同時(shí)它在數(shù)學(xué)學(xué)科中也有許多妙用!請(qǐng)看
例2(書(shū)中例3)
證法(一)原不等式等價(jià)于,由基本不等式知(1)式成立,故原不等式成立.
證法(二)向量法
[說(shuō)明]本例關(guān)鍵引導(dǎo)學(xué)生觀察不等式結(jié)構(gòu)特點(diǎn),構(gòu)造向量,并發(fā)現(xiàn)(等號(hào)成立的充要條件是)
例3(書(shū)中例4)
[說(shuō)明]本例的關(guān)鍵在于構(gòu)造單位圓,利用向量數(shù)量積的兩個(gè)公式得到證明.
二、鞏固練習(xí)
1、如圖,某人在靜水中游泳,速度為 km/h.
(1)如果他徑直游向河對(duì)岸,水的流速為4 km/h,他實(shí)際沿什么方向前進(jìn)?速度大小為多少?
答案:沿北偏東方向前進(jìn),實(shí)際速度大小是8 km/h.
(2) 他必須朝哪個(gè)方向游才能沿與水流垂直的方向前進(jìn)?實(shí)際前進(jìn)的速度大小為多少?
答案:朝北偏西方向前進(jìn),實(shí)際速度大小為km/h.
三、課堂小結(jié)
1、向量在物理、數(shù)學(xué)中有著廣泛的應(yīng)用.
2、要學(xué)會(huì)從不同的角度去看一個(gè)數(shù)學(xué)問(wèn)題,是數(shù)學(xué)知識(shí)有機(jī)聯(lián)系.
四、作業(yè)布置
1、書(shū)面作業(yè):課本P73, 練習(xí)8.4 4
教學(xué)目標(biāo):
1.結(jié)合實(shí)際問(wèn)題情景,理解分層抽樣的必要性和重要性;
2.學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;
3.并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系.
教學(xué)重點(diǎn):
通過(guò)實(shí)例理解分層抽樣的方法.
1.復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.
2.實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?
能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?
指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性.
由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,
所以在各年級(jí)抽取的個(gè)體數(shù)依次是,,,即40,32,28.
1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.
說(shuō)明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;
②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用.
3.分層抽樣的步驟:
(3)確定各層應(yīng)抽取的樣本容量.
(4)在每一層進(jìn)行抽樣(各層分別按簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本.
1.例題.
例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________.
(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;
②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);
③某班元旦聚會(huì),要產(chǎn)生兩名“幸運(yùn)者”.
例2某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛(ài)程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為1人,其中持各種態(tài)度的人數(shù)如表中所示:
電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見(jiàn),打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?
解:抽取人數(shù)與總的比是60∶12000=1∶200,
則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,
取近似值得各層人數(shù)分別是12,23,20,5.
然后在各層用簡(jiǎn)單隨機(jī)抽樣方法抽取.
答用分層抽樣的方法抽取,抽取“很喜愛(ài)”、“喜愛(ài)”、“一般”、“不喜愛(ài)”的人
數(shù)分別為12,23,20,5.
說(shuō)明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值.
(3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對(duì)學(xué)校在校務(wù)公開(kāi)方面的某意見(jiàn),擬抽取一個(gè)容量為20的樣本.
分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便.
(2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒(méi)有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.
(3)由于學(xué)校各類(lèi)人員對(duì)這一問(wèn)題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.
2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.
【使用說(shuō)明】 1、復(fù)習(xí)教材P124-P127頁(yè),40分鐘時(shí)間完成預(yù)習(xí)學(xué)案
2、有余力的學(xué)生可在完成探究案中的部分內(nèi)容。
知識(shí)與技能:理解兩角差的余弦公式的推導(dǎo)過(guò)程及其結(jié)構(gòu)特征并能靈活運(yùn)用。
過(guò)程與方法:應(yīng)用已學(xué)知識(shí)和方法思考問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。
情感態(tài)度價(jià)值觀: 通過(guò)公式推導(dǎo)引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和學(xué)習(xí)數(shù)學(xué)的興趣。
3. , ,那么 是否等于 呢?
=
從而得到兩角差的余弦公式:
____________________________________
AB與PT關(guān)系如何?
從而得到兩角差的余弦公式:
____________________________________
②當(dāng) 時(shí)顯然此時(shí) 已經(jīng)不是向量 的夾角,在 范圍內(nèi),是向量夾角的補(bǔ)角.我們?cè)O(shè)夾角為 ,則 + =
你的疑惑是什么?
________________________________________________________
______________________________________________________
例1. 利用差角余弦公式求 的值.
1、
一、自我介紹
我姓x,是你們的數(shù)學(xué)老師,因?yàn)槭菙?shù)學(xué)老師所以在自我介紹的時(shí)候喜歡給出自己的數(shù)字特征,也是希望通過(guò)這些方式能拓寬與大家交流的平臺(tái),希望能與大家在課堂中相識(shí),在生活中相知,不僅能成為你們知識(shí)的傳授者,方法的指引者,更希望成為你們情感上的依賴者。
二、相信大家對(duì)于高中學(xué)習(xí)都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節(jié)課我們不急于上新課,我想和大家聊一聊數(shù)學(xué),一起來(lái)思考為什么要學(xué)習(xí)數(shù)學(xué)及如何學(xué)好數(shù)學(xué)這兩個(gè)問(wèn)題。
(一)為什么要學(xué)習(xí)數(shù)學(xué)
相信高一的第一節(jié)課是各位科任老師各顯神通的時(shí)候,通過(guò)各種有趣的方式來(lái)突出每門(mén)課的重要性,作為數(shù)學(xué)老師我表達(dá)上不如文科老師迂回婉轉(zhuǎn)和風(fēng)趣幽默,我們更喜歡用數(shù)字說(shuō)明問(wèn)題。大家知道北大最的院系是什么系嗎?早在蔡元培先生任北大校長(zhǎng)時(shí),就列數(shù)學(xué)系為北大第一系,這種傳統(tǒng)一直保持到現(xiàn)在。為什么數(shù)學(xué)系在高校中有如此重要的地位?課本主編寄語(yǔ)是這樣描述的:數(shù)學(xué)是有用的,數(shù)學(xué)有助于提高能力。
數(shù)學(xué)家華羅庚在《人民日?qǐng)?bào)》精彩描述了數(shù)學(xué)在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁"等方面無(wú)處不有重要貢獻(xiàn)。
問(wèn)題1:大家知道海王星是怎么發(fā)現(xiàn)的,冥王星又是怎么被請(qǐng)出十大行星行列的?
海王星的發(fā)現(xiàn)是在數(shù)學(xué)計(jì)算過(guò)程中發(fā)現(xiàn)的,天文望遠(yuǎn)鏡的觀測(cè)只是驗(yàn)證了人們的推論。
1812年,法國(guó)人布瓦德在計(jì)算天王星的運(yùn)動(dòng)軌道時(shí),發(fā)現(xiàn)理論計(jì)算值同觀測(cè)資料發(fā)生了一系列誤差。這使許多天文學(xué)家紛紛致力這個(gè)問(wèn)題的研究,進(jìn)而發(fā)現(xiàn)天王星的脫軌與一個(gè)未知的引力的存在相關(guān)。也就是說(shuō)有一個(gè)未知的天體作用于天王星。1846年9月23日。柏林天文臺(tái)收到來(lái)自法國(guó)巴黎的'一封快信。發(fā)信人就是勒威耶。信中,勒威耶預(yù)告了一顆以往沒(méi)有發(fā)現(xiàn)的新星:在摩羯座8星東約5度的地方,有一顆8等小星,每天退行69角秒。當(dāng)夜,柏林天文臺(tái)的加勒把巨大的天文望遠(yuǎn)鏡對(duì)準(zhǔn)摩羯座,果真在那里發(fā)現(xiàn)了一顆新的8等星。又過(guò)了-天,再次找到了這顆8等星,它的位置比前一天后退了70角秒。這與勒威耶預(yù)告的相差甚微。全世界都震動(dòng)了。人們依照勒威耶的建議,按天文學(xué)慣例,用神話里的名字把這顆星命名為"海王星"。
1930年美國(guó)天文學(xué)家湯博發(fā)現(xiàn)冥王星,當(dāng)時(shí)錯(cuò)估了冥王星的質(zhì)量,以為冥王星比地球還大,所以命名為大行星。然而,經(jīng)過(guò)近30年的進(jìn)一步觀測(cè)和計(jì)算,發(fā)現(xiàn)它的直徑只有2300公里,比月球還要小,等到冥王星的大小被確認(rèn),"冥王星是大行星"早已被寫(xiě)入教科書(shū),以后也就將錯(cuò)就錯(cuò)了。經(jīng)過(guò)多年的爭(zhēng)論,國(guó)際天文學(xué)聯(lián)合會(huì)通過(guò)投票表決做出最終決定,取消冥王星的行星資格。8月24日據(jù)國(guó)際天文學(xué)聯(lián)合會(huì)宣布,冥王星將被排除在行星行列之外,從而太陽(yáng)系行星的數(shù)量將由九顆減為八顆。事實(shí)上,位居太陽(yáng)系九大行星末席70多年的冥王星,自發(fā)現(xiàn)之日起地位就備受爭(zhēng)議。
馬克思說(shuō):"一種科學(xué)只有在成功運(yùn)用數(shù)學(xué)時(shí),才算達(dá)到了真正完善的地步。"正因?yàn)閿?shù)學(xué)是日常生活和進(jìn)一步學(xué)習(xí)必不可少的基礎(chǔ)和工具,一切科學(xué)到了最后都?xì)w結(jié)為數(shù)學(xué)問(wèn)題。
其實(shí)在我們的周?chē)泻芏嗍虑槎际强梢杂脭?shù)學(xué)可以來(lái)解決的,無(wú)非很多人都沒(méi)有用數(shù)學(xué)的眼光來(lái)看待。
問(wèn)題2:徒認(rèn)為上帝是萬(wàn)能的。你們認(rèn)為呢?如何來(lái)證明你的結(jié)論呢?(讓同學(xué)發(fā)言)
我的觀點(diǎn):上帝不是萬(wàn)能的。為什么呢?仔細(xì)聽(tīng)我講來(lái)。
證明:(反證法)假如上帝是萬(wàn)能的
那么他能夠制作出一塊無(wú)論什么力量都搬不動(dòng)的石頭
根據(jù)假設(shè),既然上帝是萬(wàn)能的,那么他一定能夠搬的動(dòng)他自己制造的那石頭
這與"無(wú)論什么力量都搬不動(dòng)的石頭"相矛盾
所以假設(shè)不成立
所以上帝不是萬(wàn)能的。問(wèn)題3:抓鬮對(duì)個(gè)人來(lái)說(shuō)公平嗎?5張票中有一張獎(jiǎng)票,那么先抽還是后抽對(duì)個(gè)人還說(shuō)公平嗎?
當(dāng)然,我們學(xué)習(xí)的數(shù)學(xué)只是數(shù)學(xué)學(xué)科體系中很基礎(chǔ),很小的一部分?,F(xiàn)在課本上學(xué)的未必能直接應(yīng)用于生活,主要是為以后學(xué)習(xí)更高層次的理科打好基礎(chǔ),同時(shí),也為了掌握一些數(shù)學(xué)的思考方法以及分析問(wèn)題解決問(wèn)題的思維方式。哲學(xué)家培根說(shuō)過(guò):"讀詩(shī)使人靈秀,讀歷史使人明智,學(xué)邏輯使人周密,學(xué)哲學(xué)使人善辯,學(xué)數(shù)學(xué)使人聰明…",也有人形象地稱數(shù)學(xué)是思維的體操。下面我們通過(guò)具體的例子來(lái)體驗(yàn)一下某些數(shù)學(xué)思想方法和思維方式。
故事一:據(jù)說(shuō)國(guó)際象棋是古印度的一位宰相發(fā)明的。國(guó)王很欣賞他的這項(xiàng)發(fā)明,問(wèn)他的宰相要什么賞賜。聰明的宰相說(shuō),"我所要的從一粒谷子(沒(méi)錯(cuò),是1粒,不是1兩或1斤)開(kāi)始。在這個(gè)有64格的棋盤(pán)上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數(shù)加倍,……如此下去,一直放滿到棋盤(pán)上的64格。這就是我所要的賞賜。"國(guó)王覺(jué)得宰相要的實(shí)在不多,就叫人按宰相的要求賞賜。但后來(lái)發(fā)現(xiàn)即使把全國(guó)所有的谷子抬來(lái)也遠(yuǎn)遠(yuǎn)不夠。
人們通常憑借自己掌握的數(shù)學(xué)知識(shí)耍些小聰明,使問(wèn)題妙不可言。
數(shù)學(xué)游戲:兩人相繼輪流往長(zhǎng)方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應(yīng)該先放還是后放才有必勝的把握。
數(shù)學(xué)思想:退到最簡(jiǎn)單、最特殊的地方。
故事二:聰明的渡邊:20世紀(jì)40年代末,手寫(xiě)工具突破性進(jìn)展-圓珠筆問(wèn)世,它以價(jià)廉、方便、書(shū)寫(xiě)流利在社會(huì)上廣泛流傳,但寫(xiě)到20萬(wàn)字時(shí)就會(huì)因圓珠磨小而漏油,影響了銷(xiāo)售。工程師們從圓珠質(zhì)量入手,從改進(jìn)油墨性能入手進(jìn)行改良,但收效甚微。于是廠家打出廣告:解決此問(wèn)題獲獎(jiǎng)金50萬(wàn)元。當(dāng)時(shí)山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時(shí)就德育不用這一現(xiàn)象中受到啟發(fā),很好地解決了這一問(wèn)題,你認(rèn)為他會(huì)怎么做呢?
渡邊的成功之處就在于思維角度新,從問(wèn)題的側(cè)面輕巧取勝。也正體現(xiàn)了數(shù)學(xué)學(xué)習(xí)中經(jīng)常用到的發(fā)散式思維。在數(shù)學(xué)學(xué)習(xí)中,既要有集中式思維又要有發(fā)散式思維。集中式思維是一種常用思維渠道,即為對(duì)問(wèn)題的歸納,聯(lián)系思維方式,表現(xiàn)為對(duì)解題方法的模仿和繼承;而發(fā)散式思維即對(duì)問(wèn)題開(kāi)拓、創(chuàng)新,表現(xiàn)為對(duì)問(wèn)題舉一反三,觸類(lèi)旁通。在解決具體問(wèn)題中,我們應(yīng)該將兩種思維方式相結(jié)合。
學(xué)數(shù)學(xué)有利于培養(yǎng)人的思維品質(zhì):結(jié)構(gòu)意識(shí)、整體意識(shí)、抽象意識(shí)、化歸意識(shí)、優(yōu)化意識(shí)、反思意識(shí),盡管數(shù)學(xué)在培養(yǎng)學(xué)生的這些思維品質(zhì)方面和其他學(xué)科存在著交集,但數(shù)學(xué)在其中的地位是無(wú)法被代替的??傊瑢W(xué)習(xí)數(shù)學(xué)可以使人思考問(wèn)題更合乎邏輯,更有條理,更嚴(yán)密精確,更深入簡(jiǎn)潔,更善于創(chuàng)造……
(二)如何學(xué)好數(shù)學(xué)
高中數(shù)學(xué)的內(nèi)容多,抽象性、理論性強(qiáng),高中很注重自學(xué)能力的培養(yǎng)的,高中不會(huì)像初中那樣老師一天到晚盯著你,在高中一定要注重自學(xué)能力的培養(yǎng),誰(shuí)的自學(xué)能力強(qiáng),那么在一定的程度上影響著你的成績(jī)以及你將來(lái)你發(fā)展的前途。同時(shí)要注意以下幾點(diǎn):
第一:對(duì)數(shù)學(xué)學(xué)科特點(diǎn)有清楚的認(rèn)識(shí)
主編寄語(yǔ)里是這樣描述數(shù)學(xué)的特征的:數(shù)學(xué)是自然的。數(shù)學(xué)的概念、方法、思想都是人類(lèi)長(zhǎng)期實(shí)踐中自然發(fā)展形成的,以數(shù)域的發(fā)展為例,從自然數(shù)到有理數(shù)到實(shí)數(shù)再到復(fù)數(shù),都是由自然的認(rèn)知沖突引起的。因此,在學(xué)習(xí)過(guò)程中我們有必要了解知識(shí)產(chǎn)生的背景,它的形成過(guò)程以及它的應(yīng)用,讓數(shù)學(xué)顯得合情合理,渾然天成。數(shù)學(xué)中沒(méi)有含糊不清的詞,對(duì)錯(cuò)分明,凡事都要講個(gè)為什么,只要按照數(shù)學(xué)規(guī)則去學(xué)去想就能融會(huì)貫通,但是如果不把來(lái)龍去脈想清楚而是"想當(dāng)然"的話,那就學(xué)不下去了。
第二:要改變一個(gè)觀念。
有人會(huì)說(shuō)自己的基礎(chǔ)不好。那我問(wèn)下什么是基礎(chǔ)?今天所學(xué)的知識(shí)就是明天的基礎(chǔ)。明天學(xué)習(xí)的知識(shí)就是后天的基礎(chǔ)。所以要學(xué)好每一天的內(nèi)容,那么你打的基礎(chǔ)就是最扎實(shí)的了。所以現(xiàn)在你們是在同一個(gè)起跑線上的,無(wú)所謂基礎(chǔ)好不好。過(guò)去的幾年里我分別帶過(guò)五十一中和一中的學(xué)生,兩邊學(xué)生的課堂感覺(jué)差不多,應(yīng)該說(shuō)接受能力不相上下,有的時(shí)候我會(huì)選擇在五十一中開(kāi)公開(kāi)課,因?yàn)檎n堂氣氛活躍、輕松,但是成績(jī)差異卻是很大,原因在于我們同學(xué)外課自主時(shí)間的投入太少,學(xué)習(xí)習(xí)慣不太好。
第三:學(xué)數(shù)學(xué)要摸索自己的學(xué)習(xí)方法
學(xué)習(xí)、掌握并能靈活應(yīng)用數(shù)學(xué)的途徑有千萬(wàn)條,每個(gè)人都可以有與眾不同的數(shù)學(xué)學(xué)習(xí)方法。做習(xí)題、用數(shù)學(xué)解決各種問(wèn)題是必需的,理解、學(xué)會(huì)證明、領(lǐng)會(huì)思想、掌握方法也是必需的。此外,還要發(fā)揮問(wèn)題的作用,學(xué)會(huì)提問(wèn),熱心幫助別人解決問(wèn)題,用自己的問(wèn)題和別人的問(wèn)題帶動(dòng)自己的學(xué)習(xí)。同時(shí),注意前后知識(shí)的銜接,類(lèi)比地學(xué)、聯(lián)系地學(xué),既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊(yùn)含的一般概念。
第四:養(yǎng)成良好的學(xué)習(xí)習(xí)慣(與一中學(xué)生相比較)
㈠課前預(yù)習(xí)。怎樣預(yù)習(xí)呢?就是自己在上課之前把內(nèi)容先看一邊,把自己不懂的地方做個(gè)記號(hào)或者打個(gè)問(wèn)號(hào),以至于上課的時(shí)候重點(diǎn)聽(tīng),這樣才能夠很快提高自己的水平。但是預(yù)習(xí)不是很隨便的把課本看一邊,預(yù)習(xí)有個(gè)目標(biāo),那就是通過(guò)預(yù)習(xí)可以把書(shū)本后面的練習(xí)題可以自己獨(dú)立的完成。一中的同學(xué)預(yù)習(xí)就已經(jīng)有好幾個(gè)層次了,先是課本,再是精編,再是高考題典,上課對(duì)于他們來(lái)說(shuō)是第一輪高考復(fù)習(xí)。
㈡上課認(rèn)真聽(tīng)講。上課的時(shí)候準(zhǔn)備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過(guò)我不大提倡數(shù)學(xué)課做筆記的。不過(guò)有一點(diǎn),有些知識(shí)點(diǎn)比較重要,課本上又沒(méi)有的,我要求你們把它寫(xiě)在課本上的相應(yīng)的空白地方。還有如果你覺(jué)得某個(gè)例題比較新或者比較重要,也可以把它記在書(shū)本的相應(yīng)位置上,這樣以后復(fù)習(xí)起來(lái)就一目了然了。那么草稿要來(lái)干什么的呢?課堂上你可以自己演算還有做課堂練習(xí)。
㈢關(guān)于作業(yè)。絕對(duì)不允許有抄作業(yè)的情況發(fā)生。如果我發(fā)現(xiàn)有誰(shuí)抄作業(yè),那么既然他這樣喜歡抄,我就要你把當(dāng)天的作業(yè)多抄幾遍給我。那有人會(huì)問(wèn),碰到不會(huì)做的題目怎么辦?有兩個(gè)辦法:一、向同學(xué)請(qǐng)教,請(qǐng)教做題目的思路,而不是整個(gè)過(guò)程和答案。同學(xué)之間也要相互幫助,如果你讓他抄襲你的作業(yè)這樣不是幫助他而是害他,這個(gè)道理大家應(yīng)該明白吧。我非常提倡同學(xué)之間的相互討論問(wèn)題的,這樣才能夠相互促進(jìn)提高。二、向老師請(qǐng)教,要養(yǎng)成多想多問(wèn)的習(xí)慣。我的辦公室在二樓二號(hào),歡迎大家前來(lái)交流
㈣準(zhǔn)備一本筆記本,作為自己的問(wèn)題集。把平時(shí)自己不懂的和不大理解的還有易錯(cuò)的記錄下來(lái),并且要及時(shí)的消化,不懂的地方問(wèn)老師。這是一個(gè)很好的辦法,到考試的時(shí)候就可以有重點(diǎn)、有針對(duì)性的自己復(fù)習(xí)了。我高中的時(shí)候就是采用這樣的方法把數(shù)學(xué)成績(jī)提高。
好的開(kāi)始是成功的一半,新的學(xué)期開(kāi)始了,請(qǐng)大家調(diào)整好自己的思想,找到學(xué)習(xí)的原動(dòng)力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習(xí)慣;播種一種習(xí)慣,收獲一種性格;播種一種性格,收獲一種命運(yùn)。愿每位同學(xué)都有個(gè)好的開(kāi)始。
課題:
等比數(shù)列的概念
教學(xué)目標(biāo)
1、通過(guò)教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式、
2、使學(xué)生進(jìn)一步體會(huì)類(lèi)比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、
3、培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo)、
教學(xué)用具
投影儀,多媒體軟件,電腦、
教學(xué)方法
討論、談話法、
教學(xué)過(guò)程
一、提出問(wèn)題
給出以下幾組數(shù)列,將它們分類(lèi),說(shuō)出分類(lèi)標(biāo)準(zhǔn)、(幻燈片)
①—2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
⑥1,—1,1,—1,1,—1,1,—1,…
⑦1,—10,100,—1000,10000,—100000,…
⑧0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類(lèi)),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類(lèi)數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為等比數(shù)列)、
二、講解新課
請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類(lèi)似的例子,如變形蟲(chóng)分裂問(wèn)題、假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù)
這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類(lèi)數(shù)列——等比數(shù)列、(這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)
等比數(shù)列(板書(shū))
1、等比數(shù)列的定義(板書(shū))
根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的教師寫(xiě)出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語(yǔ)、
請(qǐng)學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的.數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例、而后請(qǐng)學(xué)生概括這類(lèi)數(shù)列的一般形式,學(xué)生可能說(shuō)形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是等比數(shù)列,當(dāng)時(shí),它只是等差數(shù)列,而不是等比數(shù)列、教師追問(wèn)理由,引出對(duì)等比數(shù)列的認(rèn)識(shí):
2、對(duì)定義的認(rèn)識(shí)(板書(shū))
(1)等比數(shù)列的首項(xiàng)不為0;
(2)等比數(shù)列的每一項(xiàng)都不為0,即
問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?
(3)公比不為0、
用數(shù)學(xué)式子表示等比數(shù)列的定義、
是等比數(shù)列
①、在這個(gè)式子的寫(xiě)法上可能會(huì)有一些爭(zhēng)議,如寫(xiě)成
,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫(xiě)為
是等比數(shù)列?為什么不能?式子給出了數(shù)列第項(xiàng)與第
項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式、
3、等比數(shù)列的通項(xiàng)公式(板書(shū))
問(wèn)題:用和表示第項(xiàng)
①不完全歸納法
②疊乘法,…,,這個(gè)式子相乘得,所以(板書(shū))
(1)等比數(shù)列的通項(xiàng)公式得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式、(板書(shū))
(2)對(duì)公式的認(rèn)識(shí)
由學(xué)生來(lái)說(shuō),最后歸結(jié):
①函數(shù)觀點(diǎn);
②方程思想(因在等差數(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已)、
這里強(qiáng)調(diào)方程思想解決問(wèn)題、方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類(lèi)問(wèn)題)、解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)
如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。
三、小結(jié)
1、本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;
2、注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類(lèi)比;
3、用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用。
探究活動(dòng)
將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。
參考答案:
30次后,厚度為,這個(gè)厚度超過(guò)了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍?,比如紙?、001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了、還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(對(duì)數(shù)算也行)。
三維目標(biāo):
1、知識(shí)與技能:正確理解隨機(jī)抽樣的概念,掌握抽簽法、隨機(jī)數(shù)表法的一般步驟;
2、過(guò)程與方法:
(1)能夠從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題;
(2)在解決統(tǒng)計(jì)問(wèn)題的過(guò)程中,學(xué)會(huì)用簡(jiǎn)單隨機(jī)抽樣的方法從總體中抽取樣本。
3、情感態(tài)度與價(jià)值觀:通過(guò)對(duì)現(xiàn)實(shí)生活和其他學(xué)科中統(tǒng)計(jì)問(wèn)題的提出,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界及各學(xué)科知識(shí)之間的聯(lián)系,認(rèn)識(shí)數(shù)學(xué)的重要性。
4、重點(diǎn)與難點(diǎn):正確理解簡(jiǎn)單隨機(jī)抽樣的概念,掌握抽簽法及隨機(jī)數(shù)法的步驟,并能靈活應(yīng)用相關(guān)知識(shí)從總體中抽取樣本。
教學(xué)方法:
講練結(jié)合法
教學(xué)用具:
多媒體
課時(shí)安排:
1課時(shí)
教學(xué)過(guò)程:
一、問(wèn)題情境
假設(shè)你作為一名食品衛(wèi)生工作人員,要對(duì)某食品店內(nèi)的一批小包裝餅干進(jìn)行衛(wèi)生達(dá)標(biāo)檢驗(yàn),你準(zhǔn)備怎樣做?顯然,你只能從中抽取一定數(shù)量的餅干作為檢驗(yàn)的樣本。(為什么?)那么,應(yīng)當(dāng)怎樣獲取樣本呢?
二、探究新知
1、統(tǒng)計(jì)的有關(guān)概念:總體:在統(tǒng)計(jì)學(xué)中,所有考察對(duì)象的全體叫做總體、個(gè)體:每一個(gè)考察的對(duì)象叫做個(gè)體、樣本:從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本、樣本容量:樣本中個(gè)體的數(shù)目叫做樣本的容量、統(tǒng)計(jì)的基本思想:用樣本去估計(jì)總體、
2、簡(jiǎn)單隨機(jī)抽樣的概念一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣,這樣抽取的樣本,叫做簡(jiǎn)單隨機(jī)樣本。
下列抽樣的方式是否屬于簡(jiǎn)單隨機(jī)抽樣?為什么?
(1)從無(wú)限多個(gè)個(gè)體中抽取50個(gè)個(gè)體作為樣本。
(2)箱子里共有100個(gè)零件,從中選出10個(gè)零件進(jìn)行質(zhì)量檢驗(yàn),在抽樣操作中,從中任意取出一個(gè)零件進(jìn)行質(zhì)量檢驗(yàn)后,再把它放回箱子。
(3)從8臺(tái)電腦中,不放回地隨機(jī)抽取2臺(tái)進(jìn)行質(zhì)量檢查(假設(shè)8臺(tái)電腦已編好號(hào),對(duì)編號(hào)隨機(jī)抽取)
3、常用的簡(jiǎn)單隨機(jī)抽樣方法有:
(1)抽簽法的定義。一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號(hào),把號(hào)碼寫(xiě)在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本。
思考?你認(rèn)為抽簽法有什么優(yōu)點(diǎn)和缺點(diǎn):當(dāng)總體中的個(gè)體數(shù)很多時(shí),用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現(xiàn)要抽取8位同學(xué)出來(lái)做游戲,請(qǐng)?jiān)O(shè)計(jì)一個(gè)抽取的方法,要使得每位同學(xué)被抽到的機(jī)會(huì)相等。
分析:可以把57位同學(xué)的學(xué)號(hào)分別寫(xiě)在大小,質(zhì)地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分?jǐn)嚢韬螅趶闹袀€(gè)抽出8張紙片,再選出紙片上的學(xué)號(hào)對(duì)應(yīng)的同學(xué)即可、基本步驟:第一步:將總體的所有N個(gè)個(gè)體從1至N編號(hào);第二步:準(zhǔn)備N(xiāo)個(gè)號(hào)簽分別標(biāo)上這些編號(hào),將號(hào)簽放在容器中攪拌均勻后每次抽取一個(gè)號(hào)簽,不放回地連續(xù)取n次;第三步:將取出的n個(gè)號(hào)簽上的號(hào)碼所對(duì)應(yīng)的n個(gè)個(gè)體作為樣本。
(2)隨機(jī)數(shù)法的定義:利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣,叫隨機(jī)數(shù)表法,這里僅介紹隨機(jī)數(shù)表法。怎樣利用隨機(jī)數(shù)表產(chǎn)生樣本呢?下面通過(guò)例子來(lái)說(shuō)明,假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽取樣本時(shí),可以按照下面的步驟進(jìn)行。第一步,先將800袋牛奶編號(hào),可以編為000,001,799。
第二步,在隨機(jī)數(shù)表中任選一個(gè)數(shù),例如選出第8行第7列的數(shù)7(為了便于說(shuō)明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,從選定的數(shù)7開(kāi)始向右讀(讀數(shù)的方向也可以是向左、向上、向下等),得到一個(gè)三位數(shù)785,由于785
繼續(xù)向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續(xù)向右讀,又取出567,199,507,依次下去,直到樣本的60個(gè)號(hào)碼全部取出,這樣我們就得到一個(gè)容量為60的樣本。
三、課堂練習(xí)
四、課堂小結(jié)
1、簡(jiǎn)單隨機(jī)抽樣的概念一般地,設(shè)一個(gè)總體的個(gè)體數(shù)為N,如果通過(guò)逐個(gè)抽取的方法從中抽取一個(gè)樣本,且每次抽取時(shí)各個(gè)個(gè)體被抽到的概率相等,就稱這樣的抽樣為簡(jiǎn)單隨機(jī)抽樣。
2、簡(jiǎn)單隨機(jī)抽樣的方法:抽簽法隨機(jī)數(shù)表法
五、課后作業(yè)
P57練習(xí)1、2
六、板書(shū)設(shè)計(jì)
1、統(tǒng)計(jì)的有關(guān)概念
2、簡(jiǎn)單隨機(jī)抽樣的概念
3、常用的簡(jiǎn)單隨機(jī)抽樣方法有:(1)抽簽法(2)隨機(jī)數(shù)表法
4、課堂練習(xí)
學(xué)習(xí)目標(biāo)
明確排列與組合的聯(lián)系與區(qū)別,能判斷一個(gè)問(wèn)題是排列問(wèn)題還是組合問(wèn)題;能運(yùn)用所學(xué)的排列組合知識(shí),正確地解決的實(shí)際問(wèn)題.
學(xué)習(xí)過(guò)程
一、學(xué)前準(zhǔn)備
復(fù)習(xí):
1.(課本P28A13)填空:
(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是 ;
(2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是 ;
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是 ;
(4)集合A有個(gè) 元素,集合B有 個(gè)元素,從兩個(gè)集合中各取1個(gè)元素,不同方法的種數(shù)是 ;
二、新課導(dǎo)學(xué)
探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處)
問(wèn)題1:判斷下列問(wèn)題哪個(gè)是排列問(wèn)題,哪個(gè)是組合問(wèn)題:
(1)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè)安排游覽,有多少種不同的方法?
(2)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè),并確定這2個(gè)風(fēng)景點(diǎn)的游覽順序,有多少種不同的方法?
應(yīng)用示例
例1.從10個(gè)不同的文藝節(jié)目中選6個(gè)編成一個(gè)節(jié)目單,如果某女演員的獨(dú)唱節(jié)目一定不能排在第二個(gè)節(jié)目的位置上,則共有多少種不同的排法?
例2.7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù).
(1) 甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
幼兒教師教育網(wǎng)的幼兒園教案頻道為您編輯的《高中數(shù)學(xué)教案優(yōu)選》內(nèi)容,希望能幫到您!同時(shí)我們的高中數(shù)學(xué)教案專(zhuān)題還有需要您想要的內(nèi)容,歡迎您訪問(wèn)!
相關(guān)推薦
教案課件是老師工作中的一部分,因此教案課件可能就需要每天都去寫(xiě)。?學(xué)生反應(yīng)可以幫助教師更好地把握教學(xué)節(jié)奏。以下是欄目小編為您整理的一些《高中化學(xué)優(yōu)秀教案》的內(nèi)容,希望您分享本頁(yè)內(nèi)容與您朋友!...
在我看來(lái)《高中數(shù)學(xué)教案》是眾多文章中的絕美之作。在老師日常工作中,教案課件也是其中一種,不過(guò)教案課件里知識(shí)點(diǎn)要設(shè)計(jì)好。教案是為加強(qiáng)教育教學(xué)團(tuán)隊(duì)建設(shè)和職業(yè)發(fā)展提供的有效支持。歡迎你參考,希望對(duì)你有所助益!...
老師在上課前需要有教案課件,需要大家認(rèn)真編寫(xiě)每份教案課件。只要寫(xiě)好教案課件,才能更加清楚教學(xué)的重點(diǎn)難點(diǎn)。請(qǐng)閱讀以下編輯精心收集整理的中班數(shù)學(xué)優(yōu)秀教案,歡迎您參閱讀本網(wǎng)頁(yè)!...
活動(dòng)背景: 中班小朋友對(duì)高矮已有了自己的認(rèn)識(shí),他們?cè)谏钪幸苍S會(huì)比較高矮,但不清楚在同一平面比高矮,分清最高最矮,按高矮順序排序還需要在活動(dòng)中感知體驗(yàn)。 活動(dòng)目標(biāo): 1.體驗(yàn)比高矮的快樂(lè) 2.感知物體...
幼兒教師教育網(wǎng)為您整理了一些有關(guān)《高中優(yōu)秀教案》的信息,歡迎你閱讀與收藏。老師工作中的一部分是寫(xiě)教案課件,沒(méi)有寫(xiě)的老師就需要抓緊完成了。?設(shè)計(jì)精良的教學(xué)課件可以有效提升老師的教學(xué)質(zhì)量。...
最新更新
熱門(mén)欄目