正弦定理教案。
為了增強(qiáng)學(xué)生對(duì)課堂內(nèi)容的理解,教師必須提前備好教材,同時(shí)在編寫教材的過程中也需要用心去考慮和設(shè)計(jì)。教案是其中一種有效且科學(xué)的教學(xué)方式。如果您對(duì)“正弦定理教案”有所熱衷,那么相信這篇文章能為您提供所需的幫助,但請(qǐng)注意,文章中所包含的信息僅供參考,請(qǐng)結(jié)合實(shí)際情況進(jìn)行考慮!
一、教學(xué)目標(biāo):
1.知識(shí)與技能:通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理,并推證正弦定理。會(huì)初步運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。
2.過程與方法:引導(dǎo)學(xué)生從已有的知識(shí)出發(fā),共同探究在任意三角形中,邊與其對(duì)角正弦的比值之間的關(guān)系,培養(yǎng)學(xué)生通過觀察,猜想,由特殊到一般歸納得出結(jié)論的能力和化未知為已知的解決問題的能力。
3.情感、態(tài)度與價(jià)值觀:面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生
之間、師生之間的交流、合作和評(píng)價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。
二、教學(xué)重點(diǎn)與難點(diǎn):
②了解已知兩邊和其中一邊的對(duì)角解三角形時(shí),解的情況不唯一。
寧?kù)o的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時(shí)候,會(huì)不會(huì)想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?1671年兩個(gè)法國(guó)天文學(xué)家首次測(cè)出了地月之間的距離大約為385400km,你們想知道他們當(dāng)時(shí)是怎樣測(cè)出這個(gè)距離的嗎?
學(xué)習(xí)了本章《解三角形》的內(nèi)容之后,這個(gè)問題就會(huì)迎刃而解。
㈡ 新課學(xué)習(xí):
⒈提出問題:我們知道,在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角關(guān)系的準(zhǔn)確量化的表示呢?
⒉解決問題:
,sinC=1。
(引導(dǎo)學(xué)生首先分為兩種情況,銳角三角形和鈍角三角形,然后按照化未知為已知的思路,構(gòu)造直角三角形完成證明。)
ABC是銳角三角形時(shí),設(shè)邊AB上的高是CD,根據(jù)銳角三角函數(shù)的定義,有
.
ABC是鈍角三角形時(shí),過點(diǎn)C作AB邊上的高,交AB的延長(zhǎng)線于點(diǎn)D,根據(jù)銳角三角函數(shù)的定義,有
ABC中,
成立. 從而得到:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比值相等,即
接著給出解三角形的概念:一般地,把三角形的三個(gè)角A、B、C和它們的對(duì)邊a、b、c叫做三角形的元素,已知三角形的幾個(gè)元素求其它元素的過程叫做解三角形.
問題2:你能否從方程的角度分析一下,解三角形需要已知三角形中的幾個(gè)元素?
問題 3:我們利用正弦定理可以解決一些怎樣的解三角形問題呢?
(1)已知三角形的任意兩個(gè)角與一邊,求其他兩邊和另一角。
(2)已知三角形的兩邊與其中一邊的對(duì)角,計(jì)算另一邊的對(duì)角,進(jìn)而計(jì)算出其他的邊和角。
問題4:你發(fā)現(xiàn)運(yùn)用正弦定理解決的這兩類問題的解的情況有什么不同嗎?
㈣ 布置作業(yè):
1.思考:已知兩邊和其中一邊的對(duì)角,解三角形時(shí),解的情況可能有幾種?試
從理論上說明.
[人教版數(shù)學(xué)正弦定理優(yōu)秀教案及教學(xué)設(shè)計(jì)]
課前放映一些有關(guān)軍事題材的圖片,并在課首給出引例:一天,我核潛艇A正在某海域執(zhí)行巡邏任務(wù),突然發(fā)現(xiàn)其正東處有一敵艇B正以30海里/小時(shí)的速度朝北偏西40°方向航行。經(jīng)研究,決定向其發(fā)射魚雷給以威懾性打擊。已知魚雷的速度為60海里/小時(shí),問怎樣確定發(fā)射角度可擊中敵艦?
(二)啟發(fā)引導(dǎo)學(xué)生數(shù)學(xué)地觀察問題,構(gòu)建數(shù)學(xué)模型。
用幾何畫板模擬演示魚雷及敵艦行蹤,在探討魚雷發(fā)射角度的過程中,抽象出一個(gè)解三角形問題:
從而抽象出一個(gè)雛形:
3、測(cè)量角A的實(shí)際角度,與猜測(cè)有誤差,從而產(chǎn)生矛盾:
定性研究如何轉(zhuǎn)化為定量研究?
(三)引導(dǎo)學(xué)生用“特例到一般”的研究方法,猜想數(shù)學(xué)規(guī)律。
提出問題:
1、如何對(duì)以上等式進(jìn)行檢驗(yàn)?zāi)?激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,篩選出能成立的等式。
2、那這一結(jié)論對(duì)任意三角形都適用嗎?指導(dǎo)學(xué)生用刻度尺、圓規(guī)、計(jì)算器等工具對(duì)一般三角形進(jìn)行驗(yàn)證。
(四)讓學(xué)生進(jìn)行各種嘗試,探尋理論證明的方法。
提出問題:
1、如何把猜想變成定理呢?使學(xué)生注意到猜想和定理的區(qū)別,強(qiáng)化學(xué)生思維的嚴(yán)密性。
2、怎樣進(jìn)行理論證明呢?培養(yǎng)學(xué)生的轉(zhuǎn)化思想,通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3、你能找出它們的比值嗎?借以檢驗(yàn)學(xué)生是否掌握了以上的研究思路。用幾何畫板動(dòng)畫演示,找到比值,突破難點(diǎn)。
4、將猜想變?yōu)槎ɡ?,并用以解決課首提出的問題,并進(jìn)行適當(dāng)?shù)乃枷虢逃?/p>
本節(jié)課授課對(duì)象為實(shí)驗(yàn)班的學(xué)生,學(xué)習(xí)基礎(chǔ)較好。同時(shí),考慮到這是一節(jié)探究課,授課前并沒有告訴學(xué)生授課內(nèi)容。學(xué)生在未經(jīng)預(yù)習(xí)不知正弦定理內(nèi)容和證明方法的前提下,在教師預(yù)設(shè)的思路中,一步步發(fā)現(xiàn)了定理并證明了定理,感受到了創(chuàng)造的快樂,激發(fā)了學(xué)習(xí)數(shù)學(xué)的興趣。
(一)、通過創(chuàng)設(shè)教學(xué)情境,激活了學(xué)生思維。從認(rèn)知的角度看,情境可視為一種信息載體,一種知識(shí)產(chǎn)生的背景。本節(jié)課數(shù)學(xué)情境的創(chuàng)設(shè)突出了以下兩點(diǎn):
1.從有利于學(xué)生主動(dòng)探索設(shè)計(jì)數(shù)學(xué)情境。新課標(biāo)指出:學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實(shí)的、有趣的和富有挑戰(zhàn)性的。從心理學(xué)的角度看,青少年有一種好奇的心態(tài)、探究的心理。因此,本教案緊緊地抓住高二學(xué)生的這一特征,利用“正弦定理的發(fā)現(xiàn)和證明”這一富有挑戰(zhàn)性和探索性的材料,精心設(shè)計(jì)教學(xué)情境,使學(xué)生在觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理等活動(dòng)中,逐步形成創(chuàng)新意識(shí)。
2.以問題為導(dǎo)向設(shè)計(jì)教學(xué)情境。“問題是數(shù)學(xué)的心臟”,本節(jié)課數(shù)學(xué)情境的設(shè)計(jì)處處以問題為導(dǎo)向:“怎樣調(diào)整發(fā)射角度呢?”、“我們的工作該怎樣進(jìn)行呢?”、“我們的‘根據(jù)地’是什么?”、“對(duì)任意三角形都成立嗎?”……促使學(xué)生去思考問題,去發(fā)現(xiàn)問題。
(二)、創(chuàng)造性地使用了教材。數(shù)學(xué)教學(xué)的核心是學(xué)生的“再創(chuàng)造”,新課標(biāo)提倡教師創(chuàng)造性地使用教材。本節(jié)課從問題情境的創(chuàng)造到數(shù)學(xué)實(shí)驗(yàn)的操作,再到證明方法的發(fā)現(xiàn),都對(duì)教材作了一定的調(diào)整和拓展,使其更符合學(xué)生的思維習(xí)慣和認(rèn)知水平,使學(xué)生在知識(shí)的形成過程、發(fā)展過程中展開思維,發(fā)展了學(xué)生的能力。
(三)數(shù)學(xué)實(shí)驗(yàn)走進(jìn)了課堂,這一樸實(shí)無華而又意義重大的科學(xué)研究的思路和方法給了學(xué)生成功的快樂;這一思維模式的養(yǎng)成也為學(xué)生的終身發(fā)展提供了有利的武器。
一些遺憾:由于這種探究課型在平時(shí)的教學(xué)中還不夠深入,有些學(xué)生往往以一種觀賞者的身份參與其中,主動(dòng)探究意識(shí)不強(qiáng),思維水平?jīng)]有達(dá)到足夠的提升。但相信隨著課改實(shí)驗(yàn)的深入,這種狀況會(huì)逐步改善。
一些感悟:輕松愉快的課堂是學(xué)生思維發(fā)展的天地,是合作交流、探索創(chuàng)新的主陣地,是思想教育的好場(chǎng)所。新課標(biāo)下的課堂是學(xué)生和教師共同成長(zhǎng)的舞臺(tái)!
一、教學(xué)內(nèi)容:
本節(jié)課主要通過對(duì)實(shí)際問題的探索,構(gòu)建數(shù)學(xué)模型,利用數(shù)學(xué)實(shí)驗(yàn)猜想發(fā)現(xiàn)正弦定理,并從理論上加以證實(shí),最后進(jìn)行簡(jiǎn)單的應(yīng)用。
二、教材分析:
1、教材地位與作用:本節(jié)內(nèi)容安排在《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書.數(shù)學(xué)必修5》(A版)第一章中,是在高二學(xué)生學(xué)習(xí)了三角等知識(shí)之后安排的,顯然是對(duì)三角知識(shí)的應(yīng)用;同時(shí),作為三角形中的一個(gè)定理,也是對(duì)初中解直角三角形內(nèi)容的直接延伸,而定理本身的應(yīng)用(定理應(yīng)用放在下一節(jié)專門研究)又十分廣泛,因此做好該節(jié)內(nèi)容的教學(xué),使學(xué)生通過對(duì)任意三角形中正弦定理的探索、發(fā)現(xiàn)和證實(shí),感受“類比--猜想--證實(shí)”的科學(xué)研究問題的思路和方法,體會(huì)由“定性研究到定量研究”這種數(shù)學(xué)地思考問題和研究問題的思想,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。
2、教學(xué)重點(diǎn)和難點(diǎn):重點(diǎn)是正弦定理的發(fā)現(xiàn)和證實(shí);難點(diǎn)是三角形外接圓法證實(shí)。
把握正弦定理,理解證實(shí)過程。
2、能力目標(biāo):
(1)通過對(duì)實(shí)際問題的探索,培養(yǎng)學(xué)生數(shù)學(xué)地觀察問題、提出問題、分析問題、解決問題的能力。
(2)增強(qiáng)學(xué)生的協(xié)作能力和數(shù)學(xué)交流能力。
(3)發(fā)展學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力。
3、情感態(tài)度與價(jià)值觀:
(1)通過學(xué)生自主探索、合作交流,親身體驗(yàn)數(shù)學(xué)規(guī)律的發(fā)現(xiàn),培養(yǎng)學(xué)生勇于探索、善于發(fā)現(xiàn)、不畏艱辛的創(chuàng)新品質(zhì),增強(qiáng)學(xué)習(xí)的成功心理,激發(fā)學(xué)習(xí)數(shù)學(xué)的愛好。
(2)通過實(shí)例的社會(huì)意義,培養(yǎng)學(xué)生的愛國(guó)主義情感和為祖國(guó)努力學(xué)習(xí)的責(zé)任心。
四、教學(xué)設(shè)想:
本節(jié)課采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以四周世界和生活實(shí)際為參照對(duì)象,為學(xué)生提供充分自由表達(dá)、質(zhì)疑、探究、討論問題的機(jī)會(huì),讓學(xué)生通過個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的深入探討。讓學(xué)生在“活動(dòng)”中學(xué)習(xí),在“主動(dòng)”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新。設(shè)計(jì)思路如下:
高中數(shù)學(xué)正弦定理教案,一起拉看看吧。
本節(jié)內(nèi)容是正弦定理教學(xué)的第一節(jié)課,其主要任務(wù)是引入并證明正弦定理.做好正弦定理的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),而且能培養(yǎng)學(xué)生的應(yīng)用意識(shí)和實(shí)踐操作能力,以及提出問題、解決問題等研究性學(xué)習(xí)的能力.
本節(jié)課以及后面的解三角形中涉及到計(jì)算器的使用與近似計(jì)算,這是一種基本運(yùn)算能力,學(xué)生基本上已經(jīng)掌握了.若在解題中出現(xiàn)了錯(cuò)誤,則應(yīng)及時(shí)糾正,若沒出現(xiàn)問題就順其自然,不必花費(fèi)過多的時(shí)間.
本節(jié)可結(jié)合課件“正弦定理猜想與驗(yàn)證”學(xué)習(xí)正弦定理.
1.通過對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法,會(huì)運(yùn)用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問題.
2.通過正弦定理的探究學(xué)習(xí),培養(yǎng)學(xué)生探索數(shù)學(xué)規(guī)律的思維能力,培養(yǎng)學(xué)生用數(shù)學(xué)的方法去解決實(shí)際問題的能力.通過學(xué)生的積極參與和親身實(shí)踐,并成功解決實(shí)際問題,激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的熱情,培養(yǎng)學(xué)生獨(dú)立思考和勇于探索的創(chuàng)新精神.
教學(xué)難點(diǎn):正弦定理的探索和證明;已知兩邊和其中一邊的對(duì)角解三角形時(shí),判斷解的個(gè)數(shù).
思路1.(特例引入)教師可先通過直角三角形的特殊性質(zhì)引導(dǎo)學(xué)生推出正弦定理形式,如Rt△ABC中的邊角關(guān)系,若∠C為直角,則有a=csinA,b=csinB,這兩個(gè)等式間存在關(guān)系嗎?學(xué)生可以得到asinA=bsinB,進(jìn)一步提問,等式能否與邊c和∠C建立聯(lián)系?從而展開正弦定理的探究.
思路2.(情境導(dǎo)入)如圖,某農(nóng)場(chǎng)為了及時(shí)發(fā)現(xiàn)火情,在林場(chǎng)中設(shè)立了兩個(gè)觀測(cè)點(diǎn)A和B,某日兩個(gè)觀測(cè)點(diǎn)的林場(chǎng)人員分別測(cè)到C處有火情發(fā)生.在A處測(cè)到火情在北偏西40°方向,而在B處測(cè)到火情在北偏西60°方向,已知B在A的正東方向10千米處.現(xiàn)在要確定火場(chǎng)C距A、B多遠(yuǎn)?將此問題轉(zhuǎn)化為數(shù)學(xué)問題,即“在△ABC中,已知∠CAB=130°,∠CBA=30°,AB=10千米,求AC與BC的長(zhǎng).”這就是一個(gè)解三角形的問題.為此我們需要學(xué)習(xí)一些解三角形的必要知識(shí),今天要探究的是解三角形的第一個(gè)重要定理——正弦定理,由此展開新課的探究學(xué)習(xí).
1閱讀本章引言,明確本章將學(xué)習(xí)哪些內(nèi)容及本章將要解決哪些問題?
2聯(lián)想學(xué)習(xí)過的三角函數(shù)中的邊角關(guān)系,能否得到直角三 角形中角與它所對(duì)的邊之間在數(shù)量上有什么關(guān)系?
3由2得到的數(shù)量關(guān)系式,對(duì)一般三角形是否仍然成立?
4正弦定理的內(nèi)容是什么,你能用文字語(yǔ)言敘述它嗎?你能用哪些方法證明它?
5什么叫做解三角形?
6利用正弦定理可以解決一些怎樣的三角形問題呢?
活動(dòng):教師引導(dǎo)學(xué)生閱讀本章引言,點(diǎn)出本章數(shù)學(xué)知識(shí)的某些重要的實(shí)際背景及其實(shí)際需要,使學(xué)生初步認(rèn)識(shí)到學(xué)習(xí)解三角形知識(shí)的必要性.如教師可提出以下問題:怎樣在航行途中測(cè)出海上兩個(gè)島嶼之間的距離?怎樣測(cè)出海上航行的輪船的航速和航向?怎樣測(cè)量底部不可到達(dá)的建筑物的高度?怎樣在水平飛行的飛機(jī)上測(cè)量飛機(jī)下方山頂?shù)暮0胃叨??這些實(shí)際問題的解決需要我們進(jìn)一步學(xué)習(xí)任意三角形中邊與角關(guān)系的有關(guān)知識(shí).讓學(xué)生明確本章將要學(xué)習(xí)正弦定理和余弦定理,并學(xué)習(xí)應(yīng)用這兩個(gè)定理解三角形及解決測(cè)量中的一些問題.
關(guān)于任意三角形中大邊對(duì)大角、小 邊對(duì)小角的邊角關(guān)系,教師引導(dǎo)學(xué)生探究其數(shù)量關(guān)系.先觀察特殊的直角三角形.如下圖,在Rt△ABC中,設(shè)BC=a,AC=b,AB=c,根據(jù)銳角三角函數(shù)中正弦函數(shù)的定義,有ac=sinA,bc=sinB,又sinC=1=cc,則asinA=bsinB=csinC=c.從而在Rt△ABC中,asinA=bsinB=csinC.
那么對(duì)于任意的三角形,以上關(guān)系式是否仍然成立呢?教師引導(dǎo)學(xué)生畫圖討論分析.
如下圖,當(dāng)△ABC是銳角三角形時(shí),設(shè)邊AB上的高是CD,根據(jù)任意角的三角函數(shù)的定義,有CD=asinB=bsinA,則asinA=bsinB.同理,可得csinC=bsinB.從而asinA=bsinB=csinC.
(當(dāng)△ABC是鈍角三角形時(shí),解法類似銳角三角形的情況,由學(xué)生自己完成)
通過上面的討論和探究,我們知道在任意三角形中,上述等式都成立.教師點(diǎn)出這就是今天要學(xué)習(xí)的三角形中的重要定理——正弦定理.
上述的探究過程就是正弦定理的證明方法,即分直角三角形、銳角三角形、鈍角三角形三種情況進(jìn)行證明.教師提醒學(xué)生要掌握這種由特殊到一般的分類證明思想,同時(shí)點(diǎn)撥學(xué)生觀察正弦定理的特征.它指出了任意三角形中,各邊與其對(duì)應(yīng)角的正弦之間的一個(gè)關(guān)系式.正弦定理的重要性在于它非常好地描述了任意三角形中邊與角的一種數(shù)量關(guān)系;描述了任意三角形中大邊對(duì)大角的一種準(zhǔn)確的數(shù)量關(guān)系.因?yàn)槿绻螦<∠B,由三角形性質(zhì),得a<b.當(dāng)∠A、∠B都是銳角,由正弦函數(shù)在區(qū)間(0,π2)上的單調(diào)性,可知sinA<sinB.當(dāng)∠A是銳角,∠B是鈍角時(shí),由于∠A+∠B<π,因此∠B<π-∠A,由正弦函數(shù)在區(qū)間(π2,π)上的單調(diào)性,可知sinB>sin(π-A)=sinA,所以仍有sinA<sinB.
正弦定理的證明方法很多,除了上述的證明方法以外,教師鼓勵(lì)學(xué)生課下進(jìn)一步探究正弦定理的其他證明方法.
(5)已知三角形的幾個(gè)元素(把三角形的三個(gè)角A、B、C和它們的對(duì)邊a、b、c叫做三角形的元素)求其他元素的過程叫做解三角形.
(6)應(yīng)用正弦定理可解決兩類解三角形問題:①已知三角形的任意兩個(gè)角與一邊,由三角形內(nèi)角和定理,可以計(jì)算出三角形的另一角,并由正弦定理計(jì)算出三角形的另兩邊,即“兩角一邊問題”.這類問題的解是唯一的.②已知三 角形的任意兩邊與其中一邊的對(duì)角,可以計(jì)算出另一邊的對(duì)角的正弦值,進(jìn)而確定這個(gè)角和三角形其他的邊和 角,即“兩邊一對(duì)角問題”.這類問題的答案有時(shí)不是唯一的,需根據(jù)實(shí)際情況分類討論.
例1在△ABC中,已知∠A=32.0°,∠B=81.8°,a=42.9 cm,解此三角形.
活動(dòng):解三角形就是已知三角形的某些邊和角,求其他的邊和角的過程,在本例中就是求解∠C,b,c.
此題屬于已知兩角和其中一角所對(duì)邊的問題,直接應(yīng)用正弦定理可求出邊b,若求邊c,則先求∠C,再利用正弦定理即可.
∠C=180°-(∠A+∠B)=180°-(32.0°+81.8°)=66.2°.
b=asinBsinA=42.9sin81.8°sin32.0°≈80.1(cm);
c=asinCsinA=42.9sin66.2°sin32.0°≈74.1(cm).
點(diǎn)評(píng):(1)此類問題結(jié)果為唯一解,學(xué)生較易掌握,如果已知兩角及兩角所夾的邊,也是先利用三角形內(nèi)角和定理180°求出第三個(gè)角,再利用正弦定理.
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設(shè)計(jì)。
本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的'聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)??家恍┙獯痤}。因此,正弦定理和余弦定理的知識(shí)非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):
認(rèn)知目標(biāo):通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學(xué)生會(huì)運(yùn)用正弦定理解決兩類基本的解三角形問題。
能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和觀察與邏輯思維能力,能體會(huì)用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。
根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。
指導(dǎo)學(xué)生掌握“觀察――猜想――證明――應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。
“興趣是最好的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(zhǎng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。
激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。 提問:那結(jié)論對(duì)任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)
注意:1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵(lì)學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
1.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
2.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長(zhǎng)的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡(jiǎn)單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中
一邊的對(duì)角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。
1.它表述了三角形的邊與對(duì)角的正弦值的關(guān)系。
2.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。
3.會(huì)用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
一、說教材
正弦定理是高中新教材人教A版必修五第一章1.1.1的內(nèi)容,是學(xué)生在已有知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系的研究,發(fā)現(xiàn)并掌握三角形的邊長(zhǎng)與角度之間的數(shù)量關(guān)系。提出兩個(gè)實(shí)際問題,并指出解決問題的關(guān)鍵在于研究三角形的邊、角關(guān)系,從而引導(dǎo)學(xué)生產(chǎn)生探索愿望,激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)過程中,要引導(dǎo)學(xué)生自主探究三角形的邊角關(guān)系,先由特殊情況發(fā)現(xiàn)結(jié)論,再對(duì)一般三角形進(jìn)行推導(dǎo),并引導(dǎo)學(xué)生分析正弦定理可以解決兩類關(guān)于解三角形的問題:
(1)已知兩角和一邊,解三角形;
(2)已知兩邊和其中一邊的對(duì)角,解三角形。
二、說學(xué)情
本節(jié)授課對(duì)象是高二學(xué)生,是在學(xué)生學(xué)習(xí)了必修四基本初等函數(shù)和三角恒等變換的基礎(chǔ)上,由實(shí)際問題出發(fā)探索研究三角形邊角關(guān)系,得出正弦定理。高二學(xué)生對(duì)生產(chǎn)生活問題比較感興趣,由實(shí)際問題出發(fā)可以激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生產(chǎn)生探索研究的愿望。
三、說教學(xué)目標(biāo)
【知識(shí)與技能目標(biāo)】
能準(zhǔn)確寫出正弦定理的符號(hào)表達(dá)式,能夠運(yùn)用正弦定理理解三角形、初步解決某些測(cè)量和幾何計(jì)算有關(guān)的簡(jiǎn)單的實(shí)際問題。
【過程與方法目標(biāo)】
通過對(duì)定理的證明和應(yīng)用,鍛煉獨(dú)立解決問題的能力和體會(huì)分類討論和數(shù)形結(jié)合的思想方法。
【情感態(tài)度價(jià)值觀目標(biāo)】
通過對(duì)三角形邊角關(guān)系的探究學(xué)習(xí),經(jīng)歷數(shù)學(xué)探究活動(dòng)的過程,體會(huì)由特殊到一般再由一般到特殊的認(rèn)識(shí)事物規(guī)律,培養(yǎng)探索精神和創(chuàng)新意識(shí)。
四、教學(xué)重難點(diǎn)
【重點(diǎn)】
正弦定理及其推導(dǎo)。
【難點(diǎn)】
正弦定理的推導(dǎo)與正弦定理的運(yùn)用。
五、說教學(xué)方法
運(yùn)用“發(fā)現(xiàn)問題——自主探究——嘗試指導(dǎo)——合作交流”的教學(xué)方式,整堂課圍繞“一切為了學(xué)生發(fā)展”的教學(xué)原則,突出:師生互動(dòng)、共同探索,教師指導(dǎo)、循序漸進(jìn)。
新課引入——提出問題,激發(fā)學(xué)生的求知欲。掌握正弦定理的推導(dǎo)證明——分類討論,數(shù)形結(jié)合動(dòng)腦思考,由一般到特殊,組織學(xué)生自主探索,獲得正弦定理及證明過程。
例題處理——始終由問題出發(fā),層層設(shè)疑,讓他們?cè)谔剿髦械玫街R(shí)。鞏固練習(xí)——深化對(duì)正弦定理的理解。
六、說教學(xué)過程
(一)導(dǎo)入新課
我采用的是設(shè)疑導(dǎo)入,進(jìn)行口頭提問:
(1)在我國(guó)古代就有嫦娥奔月的神話故事,明月高懸,我們仰望星空,會(huì)有無限遐想,不禁會(huì)問,月亮離我們地球有多遠(yuǎn)呢?科學(xué)家們是怎樣測(cè)出來的呢?
(2)設(shè)A,B兩點(diǎn)在河的兩岸,只給你米尺和量角設(shè)備,不過河你可以測(cè)出它們之間的距離嗎?
設(shè)計(jì)意圖:通過生活中的知識(shí)引入,激發(fā)學(xué)生學(xué)習(xí)需要和學(xué)習(xí)期待,以問題引起學(xué)生學(xué)習(xí)熱情和探索新知的欲望。讓學(xué)生積極主動(dòng)的參與到課堂里面來,更好的調(diào)動(dòng)學(xué)習(xí)氛圍。
(二)新課教學(xué)
1.復(fù)習(xí)舊知
帶動(dòng)學(xué)生回憶以前學(xué)過的知識(shí),并設(shè)置如下問題引導(dǎo)學(xué)生思考,減少學(xué)生對(duì)新知識(shí)的陌生感。
教師提問:(1)請(qǐng)同學(xué)們回憶一下,直角三角形中的各個(gè)角的正弦是怎樣表示的?這三個(gè)式子可以用同一個(gè)量聯(lián)系起來嗎?
正弦定理證明方法
作直徑BD交⊙O于D. 連接DA.
因?yàn)橥∷鶎?duì)的'圓周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R
類似可證其余兩個(gè)等式。
證明:在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點(diǎn)H
CH=a?sinB CH=b?sinA ∴a?sinB=b?sinA 得到a/sinA=b/sinB
同理,在△ABC中, b/sinB=c/sinC ∴a/sinA=b/sinB=c/sinC
在直角三角形中,在鈍角三角形中(略)。
證明:記向量i ,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c ∴a+b+c=0 則i(a+b+c) =i?a+i?b+i?c
=a?cos(180-(C-90))+0+c?cos(90-A)=-asinC+csinA=0 ∴a/sinA =c/sinC (b與i垂直,i?b=0)
證明:在△ABC中,設(shè)BC=a,AC=b,AB=c。作CD⊥AB垂足為點(diǎn)D,作BE⊥AC垂足為點(diǎn)E,則CD=a?sinB,BE= c sinA,由三角形面積公式得:AB?CD=AC?BE
即c?a?sinB= b?c sinA ∴a/sinA=b/sinB 同理可得b/sinB=c/sinC
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
正弦定理:三角形ABC中 BC/sinA=AC/sinB=AB/sinC
例如,用BC邊和經(jīng)過B的直徑BD,構(gòu)成的直角三角形DBC可以得到:
聽說能用向量證,咋么證呢?
三角形ABC為銳角三角形時(shí),過A作單位向量j垂直于向量AB,則j 與向量AB夾角為90,j與向量BC夾角為(90-B),j與向量CA夾角為(90+A),設(shè)AB=c,BC=a,AC=b,
|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得證用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得證
4
步驟1.
在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點(diǎn)H
步驟2.
證明a/sinA=b/sinB=c/sinC=2R:
如圖,任意三角形ABC,作ABC的外接圓O.
作直徑BD交⊙O于D.
連接DA.
因?yàn)橥∷鶎?duì)的圓周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R 類似可證其余兩個(gè)等式。
平面向量證法:
∴c^2=a?a+2a?b+b?b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)
∴c^2=a^2+b^2-2|a||b|Cosθ(注意:這里用到了三角函數(shù)公式)
同理可證其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是將CosC移到左邊表示一下。
做AD⊥BC.
則有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
b^2=sinB?c+a^2+cosB?c^2-2ac*cosB
b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2
本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時(shí),它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標(biāo)法等知識(shí)在三角形中的具體運(yùn)用,是生產(chǎn)、生活實(shí)際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。
本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),學(xué)生通過對(duì)定理證明的探究和討論,體驗(yàn)到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進(jìn)而培養(yǎng)學(xué)生提出問題、解決問題等研究性學(xué)習(xí)的能力。
對(duì)高一的學(xué)生來說,一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識(shí),具有一定觀察分析、解決問題的能力;但另一方面對(duì)新舊知識(shí)間的聯(lián)系、理解、應(yīng)用往往會(huì)出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動(dòng)性,注意前后知識(shí)間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問題、解決問題。
三、設(shè)計(jì)思想:
培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究呢?建構(gòu)主義認(rèn)為:“知識(shí)不是被動(dòng)吸收的,而是由認(rèn)知主體主動(dòng)建構(gòu)的。”這個(gè)觀點(diǎn)從教學(xué)的角度來理解就是:知識(shí)不僅是通過教師傳授得到的,更重要的是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動(dòng)建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。本節(jié)“正弦定理”的教學(xué),將遵循這個(gè)原則而進(jìn)行設(shè)計(jì)。
四、教學(xué)目標(biāo):
1、在創(chuàng)設(shè)的問題情境中,讓學(xué)生從已有的幾何知識(shí)和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗(yàn)坐標(biāo)法將幾何問題轉(zhuǎn)化為代數(shù)問題的優(yōu)越性,感受數(shù)學(xué)論證的嚴(yán)謹(jǐn)性.
2、理解三角形面積公式,能運(yùn)用正弦定理解決三角形的兩類基本問題,并初步認(rèn)識(shí)用正弦定理解三角形時(shí),會(huì)有一解、兩解、無解三種情況。
3、通過對(duì)實(shí)際問題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識(shí)既來源于生活,又服務(wù)與生活。
教學(xué)重點(diǎn):正弦定理的探索與證明;正弦定理的基本應(yīng)用。
突破難點(diǎn)的手段:抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生
主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。
六、復(fù)習(xí)引入:
1.在任意三角形行中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系?是否可以把邊、角關(guān)系準(zhǔn)確量化?
2.在ABC中,角A、B、C的正弦對(duì)邊分別是a,b,c,你能發(fā)現(xiàn)它們之間有什么關(guān)系嗎?
結(jié)論:
證明:(向量法)過A作單位向量j垂直于AC,由AC+CB=AB邊同乘以單位向量。
正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等。
教材地位與作用:
本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)??家恍┙獯痤}。因此,正弦定理的知識(shí)非常重要。
學(xué)情分析:
作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們?cè)诮鉀Q任意三角形的邊與角問題,就比較困難。
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。
(根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標(biāo))
教學(xué)目標(biāo)分析:
知識(shí)目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。
能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論。
情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對(duì)稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。
教法學(xué)法分析:
教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。
學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動(dòng)手嘗試相結(jié)合,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。
教學(xué)過程
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(zhǎng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對(duì)任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對(duì)一般三角形進(jìn)行驗(yàn)證。
3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:
在三角形中,角與所對(duì)的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學(xué)生對(duì)結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵(lì)學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明
(四)歸納總結(jié),簡(jiǎn)單應(yīng)用
1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ?,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長(zhǎng)的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。
(五)講解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81。8°,a=42。9cm。解三角形。
例1簡(jiǎn)單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來解三角形。
2.例2。在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對(duì)角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
(六)課堂練習(xí),提高鞏固
1、在△ABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2、在△ABC中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。
(七)小結(jié)反思,提高認(rèn)識(shí)
通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?
1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.它表述了三角形的邊與對(duì)角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。
(從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動(dòng)學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動(dòng)的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。
(九)作業(yè)布置
感謝您閱讀“幼兒教師教育網(wǎng)”的《正弦定理教案通用9篇》一文,希望能解決您找不到幼兒園教案時(shí)遇到的問題和疑惑,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了正弦定理教案專題,希望您能喜歡!
相關(guān)推薦
老師在新授課程時(shí),一般會(huì)準(zhǔn)備教案課件,老師在寫教案課件時(shí)還需要花點(diǎn)心思去寫。教案是教育教學(xué)過程中對(duì)學(xué)生進(jìn)行培養(yǎng)和指導(dǎo)的必要手段。下面由編輯給大家來分享正弦定理教案,如果您喜歡本文可以分享給身邊朋友喔!...
教師的職責(zé)之一是制作教案課件,這需要教師對(duì)每個(gè)課件進(jìn)行更加完善的設(shè)計(jì)。教案是教學(xué)過程中的重要規(guī)劃。幼兒教師教育網(wǎng)編輯為大家準(zhǔn)備了有關(guān)“正弦定理教案”的相關(guān)資訊,請(qǐng)隨時(shí)查閱,并收藏本站。歡迎關(guān)注網(wǎng)站的更新!...
根據(jù)您的需求,編輯為您整理了以下的“余弦定理課件教案”,煩請(qǐng)您仔細(xì)閱讀并收藏本文。老師職責(zé)的其中一項(xiàng)是編寫自己的教案和課件,因此老師在撰寫教案時(shí)必須認(rèn)真對(duì)待。老師在上課時(shí)將按照教案和課件來實(shí)施教學(xué)。...
最新更新