教學目標:
1.讓學生經(jīng)歷韋恩圖的產生過程,能借助直觀圖,利用集合的思想方法解決簡單的實際問題。
2.培養(yǎng)學生善于觀察、善于思考的學習習慣。使學生感受到數(shù)學在現(xiàn)實生活中的廣泛應用,嘗試用數(shù)學的方法解決實際生活中的問題,體驗解決問題策略的多樣性。
教學重點:
讓學生感知集合的思想,并利用集合的思想方法解決簡單的實際問題。
教學難點:
學生對重疊部分的理解。
教學準備:
多媒體課件、姓名卡片等。
教學過程:
(一)創(chuàng)設情境,引出新知
1.出示信息。
出示教科書例1,只出示統(tǒng)計表,不出示問題。讓學生說一說從中獲得了哪些信息。
2.提出問題,激發(fā)“沖突”
讓學生自由提出想要解決的問題,重點關注“參加這兩項比賽的共有多少人”這個問題,讓學生解答。關注不同的答案,抓住“沖突”,激發(fā)學生探究的欲望。
(二)自主探究,學習新知
1.獨立思考表達方式,經(jīng)歷知識形成過程。
師:大家對這個問題產生了不同的意見。你能不能借助圖、表或其他方式,讓其他人清楚地看出結果呢?
學生獨立思考,并嘗試解決。
2.匯報交流,初步感知集合概念。
(1)小組交流,互相介紹自己的作品。
(2)選擇有代表性的方案全班交流。
請每幅作品的創(chuàng)作者上臺介紹自己的思考過程,注意追問“如何表示出兩項比賽都參加的學生”,體會兩個集合中的公共元素構成的交集。
預設1:把參加兩項比賽的學生姓名分別列出,把相同的名字連起,就找到兩項比賽都參加的學生了,有3人。這樣參加跳繩比賽的9人,加上參加踢毽比賽的8人,再去掉3個重復的,應該是14人。
預設2:先寫出所有參加跳繩比賽同學的姓名,再寫參加踢毽比賽的。如果與前面的相同就不重復寫了,連線就能表示了。一共寫出了14個不同的姓名,說明參加比賽的有14人。從姓名上如果引出兩條線,就說明他兩項比賽都參加了。
預設3:把參加兩項比賽學生的`姓名分別放到兩個長方形里,再把兩項比賽都參加的學生的名字移到一邊,兩個長方形里都有這三個名字,把這兩個長方形的這部分重疊起來,名字只出一次就可以了??梢钥闯鲋粎⒓犹K比賽的有6人,兩項比賽都參加的有3人,只參加踢毽比賽的有5人,一共有14人。
3.對比分析,介紹韋恩圖。
(1)對比、分析,提示課題。
師:同學們解決問題的能力真強,而且畫出了這么多不同的圖示表示。上面的三幅圖中,你更喜歡哪一幅?為什么?
預設1:喜歡第三幅,去掉了重復的學生的姓名,更清楚,很容易看出參加這兩項比賽的學生情況。
預設2:喜歡第三幅,用兩個長方形的重疊部分表示兩項比賽都參加的學生,很直觀。
師:在數(shù)學上,我們把參加跳繩比賽的學生看作一個整體,叫做一個集合;把參加踢毽比賽的學生看作一個整體,也是一個集合。今天我們就研究集合。(板書課題:集合。)
(2)介紹用韋恩圖表示集合。
師:第三幅圖先把參加跳繩的和踢毽的學生的姓名分別放在了長方形里,很直觀。回憶一下,在認識百以內數(shù)的時候,按要求寫數(shù)時,就把提供的數(shù)和按要求寫出的數(shù)都用類似長方形的圈圈了起,每個圈都分別表示一個集合。
師:在數(shù)學上我們常用這樣的方法,直觀地把集合中的具體事物表示出來。(多媒體課件出示左下圖,或在黑板上將姓名卡片圈起。)
師:這個圖表示什么?
預設:參加跳繩比賽的學生的集合。
出示右上圖,隨學生回答將參加踢毽比賽的學生姓名填入圈中。
在填入姓名時,引導學生發(fā)現(xiàn),每個圈中的姓名不能重復、不能遺漏,體會集合元素的互異性;每個圈中姓名的擺放次序可以多樣,體會集合元素的無序性。
(3)介紹用韋恩圖表示集合的運算。
提問:利用這兩個圖怎樣才能讓他人直觀地看出“參加這兩項比賽的人員情況”呢?
通過多媒體課件,動態(tài)展示將左右兩個圖部分重疊的過程,或操作姓名卡片,去掉重復的姓名卡片,幫助學生理解姓名出現(xiàn)兩次的學生是這兩個集合的公共元素,可以用兩個圖的重疊部分表示它們的交集。
提問:中間重疊的部分表示的是什么?
預設:兩項比賽都參加的學生;既參加跳繩比賽又參加踢毽比賽的學生。
提問:整個圖表示的是什么?
預設:參加這兩項比賽的學生;參加跳繩比賽或參加踢毽比賽的學生。
4.列式解答,加深對集合運算的認識。
(1)嘗試獨立解決。
(2)匯報交流,體會解決問題的多種方法。
預設:9+8-3=14,9+(8-3)=14,8+(9-3)=14,6+3+5=14等。
讓學生通過圖示與算式結合進行表達,感悟多種集合知識。可以讓學生在韋恩圖上指一指它們求出的是哪一部分,體會并集;指一指算式中每一步表達的是哪一部分,如“8-3”和“9-3”,體會差集。
(3)比較辨析,體會基本方法。
通過對各種計算方法的比較,發(fā)現(xiàn)雖然具體列式方法不同,但都解決了問題,即求出了兩個集合的并集的元素個數(shù)。重點讓學生說一說9+8-3=14這一算式表達的含義,“參加跳繩比賽的人數(shù)加上參加踢毽比賽的人數(shù)再減去兩項比賽都參加的人數(shù)”,體會“求兩個集合的并集的元素個數(shù),就是用兩個集合的元素個數(shù)的和減去它們的交集的元素個數(shù)”這一基本方法。
(三)聯(lián)系生活,鞏固練習
1.完成“做一做”第1題。
先獨立完成,再匯報交流。
可先分別出示兩個集合圈,讓學生填入相應的序號,再利用多媒體課件動態(tài)展示將兩個集合并的過程。
2.完成“做一做”第2題。
學生先獨立完成,再匯報交流。
提問1:你是用什么方法解答第(1)題的?要注意什么?
預設:圈出重復的姓名,再數(shù)出。要認真仔細找,不要漏掉。
提問2:第(2)題是求什么?你是用什么方法解答的?
預設:第(2)題求的是獲得“語文之星”或“數(shù)學之星”的一共有多少人,只要獲得了任何一個獎都要計算進去。先數(shù)出獲得“語文之星”的集合的人數(shù),再數(shù)出獲得“數(shù)學之星”的集合的人數(shù),相加后,再去掉既獲得“語文之星”又獲得“數(shù)學之星”的人數(shù)。如果學生理解題意有困難,可以借助韋恩圖幫助學生理解。
(四)全課小結
師:今天我們學習了集合的知識,還會運用集合知識解決生活中的問題。說一說今天你有什么收獲。
課題: 充要條件
一、課標要求:
理解充分條件、必要條件與充要條件的意義,會判斷充分條件、必要條件與充要條件.
二、知識與方法回顧:
1、充分條件、必要條件與充要條件的概念:
2、從邏輯推理關系上看充分不必要條件、必要不充分條件與充要條件:
3、從集合與集合之間關系上看充分條件、必要條件與充要條件:
4、特殊值法:判斷充分條件與必要條件時,往往用特殊值法來否定結論
5、化歸思想:
表示p等價于q,等價命題可以進行相互轉化,當我們要證明p成立時,就可以轉化為證明q成立;
這里要注意原命題 逆否命題、逆命題 否命題只是等價形式之一,對于條件或結論是不等式關系(否定式)的命題一般應用化歸思想.
6、數(shù)形結合思想:
利用韋恩圖(即集合的包含關系)來判斷充分不必要條件,必要不充分條件,充要條件.
三、基礎訓練:
1、 設命題若p則q為假,而若q則p為真,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、 設集合M,N為是全集U的兩個子集,則 是 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
3、 若 是實數(shù),則 是 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
四、例題講解
例1 已知實系數(shù)一元二次方程 ,下列結論中正確的是 ( )
(1) 是這個方程有實根的充分不必要條件
(2) 是這個方程有實根的'必要不充分條件
(3) 是這個方程有實根的充要條件
(4) 是這個方程有實根的充分不必要條件
A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)
例2 (1)已知h 0,a,bR,設命題甲: ,命題乙: 且 ,問甲是乙的 ( )
(2)已知p:兩條直線的斜率互為負倒數(shù),q:兩條直線互相垂直,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
變式:a = 0是直線 與 平行的 條件;
例3 如果命題p、q都是命題r的必要條件,命題s是命題r的充分條件,命題q是命題s
的充分條件,那么命題p是命題q的 條件;命題s是命題q的 條件;命題r是命題q的 條件.
例4 設命題p:|4x-3| 1,命題q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分條件,求實數(shù)a的取值范圍;
例5 設 是方程 的兩個實根,試分析 是兩實根 均大于1的什么條件?并給予證明.
五、課堂練習
1、設命題p: ,命題q: ,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、給出以下四個命題:①若p則q②若﹁r則﹁q③ 若r則﹁s
④若﹁s則q若它們都是真命題,則﹁p是s的 條件;
3、是否存在實數(shù)p,使 是 的充分條件?若存在,求出p的取值范圍;若不存在說明理由.
六、課堂小結:
七、教學后記:
教材分析:
本單元是非常有趣的數(shù)學活動,也是邏輯思維訓練的起始課。邏輯推理能力是人們在生活、學習工作中很重要的能力。本單元主要要求學生能根據(jù)提供的信息,借助集合圈進行判斷、推理,得出結論,使學生初步接觸和運用集合圈分析問題、解決問題。教材試圖通過一些生動有趣的簡單事例,運用操作、實驗、猜測等直觀手段解決這些問題,滲透數(shù)學的思想方法,初步培養(yǎng)學生借助幾何直觀思考問題的意識。
教學目標:
1、在具體情境中使學生感受集合的思想,感知集合圖的產生過程。
2、能借助直觀圖,利用集合的思想方法解決簡單的實際問題,同時使學生在解決問題的過程中進一步體會集合的思想,進而形成策略。
3、滲透多種方法解決重疊問題的意識,培養(yǎng)學生善于觀察、勤于思考的學習習慣。
教學重點:
讓學生感知集合的思想,并能初步用集合的思想解決簡單的實際問題。
教學難點:
對重疊部分的理解。
課前準備:
課件、呼啦圈2個、磁性圓片
教學過程:
一、創(chuàng)設探究情境,引領學生初步感知。
1、創(chuàng)設情境,激發(fā)興趣。
腦筋急轉彎:兩位爸爸和兩位兒子一同去海洋世界(每人都得買一張票),可是他們只買了3張票,便順利地進去了。這是為什么?
學生活動:學生猜測各種可能性,你一言我一語地發(fā)表自己的高見。
2、設置懸念,引人入勝
師:“大家的猜測都有自己的道理,但答案到底是什么呢?暫時老師還不想告訴你們,我想通過下面的活動,大家一定能自己找到答案的?!?/p>
二、創(chuàng)設實踐情境,引領學生深入理解。
(一)報名參加數(shù)學比賽:四宮數(shù)獨和六宮數(shù)獨
1、師:三年級一班有3名學生報名參加了四宮數(shù)獨,4名學生報名參加了六宮數(shù)獨。
2、出示參加四宮、六宮數(shù)獨比賽的學生名單:
四宮:子宜、佳琳、俊軒
六宮:子宜、曉晴、子凌、方華
3、數(shù)一數(shù),參加四宮的有幾位同學?(3人) 參加六宮的有幾位同學?(4人)師:一共有幾人參加比賽?
生:7人或6人。
師:究竟是6人?還是7人呢?我們請這些同學上臺,讓我們一起數(shù)一數(shù),好嗎? 請以上名字的.同學上臺(同學們一起喊他們的名字)
四宮站在左邊,六宮站在右邊。(矛盾:子宜兩邊走)
師:子宜,為什么你要兩邊走呢?
同學們,出現(xiàn)這種情況,我們該怎么處理呢?同學們在小組里小聲地有序地說說自己的辦法。
4、小組討論:請想到方法的同學上臺進行調整。(把重復參賽的同學放在兩圈的交叉位置,并說一說各個組的名單)
5、師:探究:如果我們不用語言和動作,還可以用一種什么樣的方法來表示,“既能清楚地看出每個人的情況,又能明顯看出一共有多少人”呢?
學生小組合作想辦法。
請同學們在白紙上畫一畫,畫完后小組內說說你是怎么表示的。(畫集合圖、韋恩圖)。 師生共同畫出集合圖(利用呼啦圈畫,板書)
師:你真有創(chuàng)意,只用簡簡單單的兩個圈,就把兩個組成員之間的關系表示出來了。這樣的圖我們把它叫做集合圖,今天我們學習的內容就是數(shù)學廣角—— 集合。
(板書課題:數(shù)學廣角——集合)這種圖我們也叫它韋恩圖或文氏圖,因為它是十九世紀英國數(shù)學家韋恩最先開始使用的,所以就以“韋恩”來命名了。
6、觀察黑板上的集合圖,讓學生了解集合圖各部分的意義。
師:誰來當小老師,介紹一下集合圖中各個圈表示的意思啊?
7、三(1)班一共有多少人參加比賽?根據(jù)集合圖,列出算式。
小組討論:寫算式,并進行匯報。(算法多樣化)
8、回顧剛才的做法:(課件)
三、能力提升。
1、提出問題。
師:如果三(2)班也有3名同學參加了四宮比賽,4名同學參加了六宮比賽,想一想,他們班可能會有多少人參加了比賽?
3、學生匯報。
學生觀察,說一說規(guī)律:各項目的總人數(shù) — 重復的人數(shù) = 參賽的總人數(shù)。
舉例:三年級一共有20人參加比賽,其中跳繩12人,跑步15人。問兩項都參加的幾人? 12+15-20=7(人)
四、創(chuàng)設拓展情境,引領學生形成策略。
1、現(xiàn)在,我們再回過頭去看看上課開始時老師給大家出的腦筋爭轉彎吧:兩位爸爸和兩位兒子一同去海洋極地世界(每人都得買一張票),可是他們只買了3張票,便順利地進了電影院。這是為什么?
師:兩位爸爸和兩位兒子一共是幾個人?真有這么多人嗎?可能會有什么情況?
2、同學們排隊做操,小明排在從前數(shù)第9個,從后數(shù)第7個,小明這一排一共有多少個同學?
3、小調查:本班喜歡吃蘋果的有幾人,喜歡吃香蕉的有幾人?
(1)既喜歡吃蘋果又喜歡吃香蕉的有幾人?
(2)只喜歡吃蘋果的有幾人?
(3)只喜歡吃香蕉的有幾人?
先獨立思考,再與同桌交流解決問題的策略(引導學生借助重疊圖來理解算法),然后全班反饋。反饋時要求學生說出自己的理解。
五、自我小結,共同提高
師:同學們今天表現(xiàn)都很突出,誰愿意來說說自己今天有什么收獲?和同學們一起分享。課后請大家留心觀察,用今天學習的知識還能解決生活中的哪些問題。
教學目標
1.使學生掌握的概念,圖象和性質.
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.
(2)能在基本性質的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質.
(3)能利用的性質比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.
2.通過對的概念圖象性質的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結合的思想方法.
3.通過對的研究,讓學生認識到數(shù)學的應用價值,激發(fā)學生學習數(shù)學的興趣.使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題.教學建議
教材分析
(1)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質的基礎上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質的第一次應用,也是今后學習對數(shù)函數(shù)的基礎,同時在生活及生產實際中有著廣泛的應用,所以應重點研究.
(2)本節(jié)的教學重點是在理解定義的基礎上掌握的圖象和性質.難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.
(3)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議
(1)關于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是.
(2)對底數(shù)的限制條件的理解與認識也是認識的重要內容.如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對的認識及性質的分類討論,還關系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.
關于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數(shù)的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.
重點難點教學:
1.正確理解映射的概念;
2.函數(shù)相等的兩個條件;
3.求函數(shù)的定義域和值域。
教學過程:
1. 使學生熟練掌握函數(shù)的概念和映射的定義;
2. 使學生能夠根據(jù)已知條件求出函數(shù)的定義域和值域; 3. 使學生掌握函數(shù)的三種表示方法。
教學內容:
1.函數(shù)的定義
設A、B是兩個非空的數(shù)集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)fx和它對應,那么稱:fAB81為從集合A到集合B的一個函數(shù)(function),記作:yfxxA
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數(shù)值,函數(shù)值的集合{|}fxxA83叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.
2.構成函數(shù)的三要素 定義域、對應關系和值域。
3、映射的定義
設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意
一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從 集合A到集合B的一個映射。
4. 區(qū)間及寫法:
設a、b是兩個實數(shù),且a
(1) 滿足不等式axb8080的實數(shù)x的集合叫做閉區(qū)間,表示為[a,b];
(2) 滿足不等式axb8787的實數(shù)x的集合叫做開區(qū)間,表示為(a,b);
5.函數(shù)的三種表示方法
①解析法
②列表法
③圖像法
感謝您閱讀“幼兒教師教育網(wǎng)”的《高一數(shù)學必修一教案人教版(必備5篇)》一文,希望能解決您找不到幼兒園教案時遇到的問題和疑惑,同時,yjs21.com編輯還為您精選準備了高一數(shù)學教案專題,希望您能喜歡!
相關推薦
作為一位無私奉獻的人民教師,時常需要編寫教案,編寫教案助于積累教學經(jīng)驗,不斷提高教學質量。快來參考教案是怎么寫的吧!下面是小編為大家整理的人教版高一英語必修一教案,希望對大家有所幫助。高中英語新人教版必修一教案 篇1教學準備教學目標1). To learn the knowledge...
新高一數(shù)學必修一教案 篇1教學目標:1.讓學生經(jīng)歷韋恩圖的產生過程,能借助直觀圖,利用集合的思想方法解決簡單的實際問題。2.培養(yǎng)學生善于觀察、善于思考的學習習慣。使學生感受到數(shù)學在現(xiàn)實生活中的廣泛應用,嘗試用數(shù)學的方法解決實際生活中的問題,體驗解決問題策略的多樣性。教學重點:讓學...
光陰如水,我們的教學工作又將翻開新的一頁,現(xiàn)在的你想必不是在做教學計劃,就是在準備做教學計劃吧。但是教學計劃要寫什么內容才能讓人眼前一亮呢?以下是小編為大家整理的2024年高一數(shù)學教學計劃(精選8篇),歡迎大家借鑒與參考,希望對大家有所幫助。2024高中教案數(shù)學必修一 篇1一、教材分析1...
時間的腳步是無聲的,它在不經(jīng)意間流逝,新的機遇和挑戰(zhàn)向我們走來,讓我們對今后的教學工作做個計劃吧。如何把教學計劃寫出新花樣呢?以下是小編精心整理的2024年高一英語教學計劃(精選5篇),歡迎大家借鑒與參考,希望對大家有所幫助。2024人教版高中英語必修一教案 篇1一、教材分析本學期按照新...
最新更新