教學(xué)目標(biāo):
1.讓學(xué)生經(jīng)歷韋恩圖的產(chǎn)生過程,能借助直觀圖,利用集合的思想方法解決簡單的實(shí)際問題。
2.培養(yǎng)學(xué)生善于觀察、善于思考的學(xué)習(xí)習(xí)慣。使學(xué)生感受到數(shù)學(xué)在現(xiàn)實(shí)生活中的廣泛應(yīng)用,嘗試用數(shù)學(xué)的方法解決實(shí)際生活中的問題,體驗(yàn)解決問題策略的多樣性。
教學(xué)重點(diǎn):
讓學(xué)生感知集合的思想,并利用集合的思想方法解決簡單的實(shí)際問題。
教學(xué)難點(diǎn):
學(xué)生對(duì)重疊部分的理解。
教學(xué)準(zhǔn)備:
多媒體課件、姓名卡片等。
教學(xué)過程:
(一)創(chuàng)設(shè)情境,引出新知
1.出示信息。
出示教科書例1,只出示統(tǒng)計(jì)表,不出示問題。讓學(xué)生說一說從中獲得了哪些信息。
2.提出問題,激發(fā)“沖突”
讓學(xué)生自由提出想要解決的問題,重點(diǎn)關(guān)注“參加這兩項(xiàng)比賽的共有多少人”這個(gè)問題,讓學(xué)生解答。關(guān)注不同的答案,抓住“沖突”,激發(fā)學(xué)生探究的欲望。
(二)自主探究,學(xué)習(xí)新知
1.獨(dú)立思考表達(dá)方式,經(jīng)歷知識(shí)形成過程。
師:大家對(duì)這個(gè)問題產(chǎn)生了不同的意見。你能不能借助圖、表或其他方式,讓其他人清楚地看出結(jié)果呢?
學(xué)生獨(dú)立思考,并嘗試解決。
2.匯報(bào)交流,初步感知集合概念。
(1)小組交流,互相介紹自己的作品。
(2)選擇有代表性的方案全班交流。
請(qǐng)每幅作品的創(chuàng)作者上臺(tái)介紹自己的思考過程,注意追問“如何表示出兩項(xiàng)比賽都參加的學(xué)生”,體會(huì)兩個(gè)集合中的公共元素構(gòu)成的交集。
預(yù)設(shè)1:把參加兩項(xiàng)比賽的學(xué)生姓名分別列出,把相同的名字連起,就找到兩項(xiàng)比賽都參加的學(xué)生了,有3人。這樣參加跳繩比賽的9人,加上參加踢毽比賽的8人,再去掉3個(gè)重復(fù)的,應(yīng)該是14人。
預(yù)設(shè)2:先寫出所有參加跳繩比賽同學(xué)的姓名,再寫參加踢毽比賽的。如果與前面的相同就不重復(fù)寫了,連線就能表示了。一共寫出了14個(gè)不同的姓名,說明參加比賽的有14人。從姓名上如果引出兩條線,就說明他兩項(xiàng)比賽都參加了。
預(yù)設(shè)3:把參加兩項(xiàng)比賽學(xué)生的`姓名分別放到兩個(gè)長方形里,再把兩項(xiàng)比賽都參加的學(xué)生的名字移到一邊,兩個(gè)長方形里都有這三個(gè)名字,把這兩個(gè)長方形的這部分重疊起來,名字只出一次就可以了??梢钥闯鲋粎⒓犹K比賽的有6人,兩項(xiàng)比賽都參加的有3人,只參加踢毽比賽的有5人,一共有14人。
3.對(duì)比分析,介紹韋恩圖。
(1)對(duì)比、分析,提示課題。
師:同學(xué)們解決問題的能力真強(qiáng),而且畫出了這么多不同的圖示表示。上面的三幅圖中,你更喜歡哪一幅?為什么?
預(yù)設(shè)1:喜歡第三幅,去掉了重復(fù)的學(xué)生的姓名,更清楚,很容易看出參加這兩項(xiàng)比賽的學(xué)生情況。
預(yù)設(shè)2:喜歡第三幅,用兩個(gè)長方形的重疊部分表示兩項(xiàng)比賽都參加的學(xué)生,很直觀。
師:在數(shù)學(xué)上,我們把參加跳繩比賽的學(xué)生看作一個(gè)整體,叫做一個(gè)集合;把參加踢毽比賽的學(xué)生看作一個(gè)整體,也是一個(gè)集合。今天我們就研究集合。(板書課題:集合。)
(2)介紹用韋恩圖表示集合。
師:第三幅圖先把參加跳繩的和踢毽的學(xué)生的姓名分別放在了長方形里,很直觀。回憶一下,在認(rèn)識(shí)百以內(nèi)數(shù)的時(shí)候,按要求寫數(shù)時(shí),就把提供的數(shù)和按要求寫出的數(shù)都用類似長方形的圈圈了起,每個(gè)圈都分別表示一個(gè)集合。
師:在數(shù)學(xué)上我們常用這樣的方法,直觀地把集合中的具體事物表示出來。(多媒體課件出示左下圖,或在黑板上將姓名卡片圈起。)
師:這個(gè)圖表示什么?
預(yù)設(shè):參加跳繩比賽的學(xué)生的集合。
出示右上圖,隨學(xué)生回答將參加踢毽比賽的學(xué)生姓名填入圈中。
在填入姓名時(shí),引導(dǎo)學(xué)生發(fā)現(xiàn),每個(gè)圈中的姓名不能重復(fù)、不能遺漏,體會(huì)集合元素的互異性;每個(gè)圈中姓名的擺放次序可以多樣,體會(huì)集合元素的無序性。
(3)介紹用韋恩圖表示集合的運(yùn)算。
提問:利用這兩個(gè)圖怎樣才能讓他人直觀地看出“參加這兩項(xiàng)比賽的人員情況”呢?
通過多媒體課件,動(dòng)態(tài)展示將左右兩個(gè)圖部分重疊的過程,或操作姓名卡片,去掉重復(fù)的姓名卡片,幫助學(xué)生理解姓名出現(xiàn)兩次的學(xué)生是這兩個(gè)集合的公共元素,可以用兩個(gè)圖的重疊部分表示它們的交集。
提問:中間重疊的部分表示的是什么?
預(yù)設(shè):兩項(xiàng)比賽都參加的學(xué)生;既參加跳繩比賽又參加踢毽比賽的學(xué)生。
提問:整個(gè)圖表示的是什么?
預(yù)設(shè):參加這兩項(xiàng)比賽的學(xué)生;參加跳繩比賽或參加踢毽比賽的學(xué)生。
4.列式解答,加深對(duì)集合運(yùn)算的認(rèn)識(shí)。
(1)嘗試獨(dú)立解決。
(2)匯報(bào)交流,體會(huì)解決問題的多種方法。
預(yù)設(shè):9+8-3=14,9+(8-3)=14,8+(9-3)=14,6+3+5=14等。
讓學(xué)生通過圖示與算式結(jié)合進(jìn)行表達(dá),感悟多種集合知識(shí)??梢宰寣W(xué)生在韋恩圖上指一指它們求出的是哪一部分,體會(huì)并集;指一指算式中每一步表達(dá)的是哪一部分,如“8-3”和“9-3”,體會(huì)差集。
(3)比較辨析,體會(huì)基本方法。
通過對(duì)各種計(jì)算方法的比較,發(fā)現(xiàn)雖然具體列式方法不同,但都解決了問題,即求出了兩個(gè)集合的并集的元素個(gè)數(shù)。重點(diǎn)讓學(xué)生說一說9+8-3=14這一算式表達(dá)的含義,“參加跳繩比賽的人數(shù)加上參加踢毽比賽的人數(shù)再減去兩項(xiàng)比賽都參加的人數(shù)”,體會(huì)“求兩個(gè)集合的并集的元素個(gè)數(shù),就是用兩個(gè)集合的元素個(gè)數(shù)的和減去它們的交集的元素個(gè)數(shù)”這一基本方法。
(三)聯(lián)系生活,鞏固練習(xí)
1.完成“做一做”第1題。
先獨(dú)立完成,再匯報(bào)交流。
可先分別出示兩個(gè)集合圈,讓學(xué)生填入相應(yīng)的序號(hào),再利用多媒體課件動(dòng)態(tài)展示將兩個(gè)集合并的過程。
2.完成“做一做”第2題。
學(xué)生先獨(dú)立完成,再匯報(bào)交流。
提問1:你是用什么方法解答第(1)題的?要注意什么?
預(yù)設(shè):圈出重復(fù)的姓名,再數(shù)出。要認(rèn)真仔細(xì)找,不要漏掉。
提問2:第(2)題是求什么?你是用什么方法解答的?
預(yù)設(shè):第(2)題求的是獲得“語文之星”或“數(shù)學(xué)之星”的一共有多少人,只要獲得了任何一個(gè)獎(jiǎng)都要計(jì)算進(jìn)去。先數(shù)出獲得“語文之星”的集合的人數(shù),再數(shù)出獲得“數(shù)學(xué)之星”的集合的人數(shù),相加后,再去掉既獲得“語文之星”又獲得“數(shù)學(xué)之星”的人數(shù)。如果學(xué)生理解題意有困難,可以借助韋恩圖幫助學(xué)生理解。
(四)全課小結(jié)
師:今天我們學(xué)習(xí)了集合的知識(shí),還會(huì)運(yùn)用集合知識(shí)解決生活中的問題。說一說今天你有什么收獲。
課題: 充要條件
一、課標(biāo)要求:
理解充分條件、必要條件與充要條件的意義,會(huì)判斷充分條件、必要條件與充要條件.
二、知識(shí)與方法回顧:
1、充分條件、必要條件與充要條件的概念:
2、從邏輯推理關(guān)系上看充分不必要條件、必要不充分條件與充要條件:
3、從集合與集合之間關(guān)系上看充分條件、必要條件與充要條件:
4、特殊值法:判斷充分條件與必要條件時(shí),往往用特殊值法來否定結(jié)論
5、化歸思想:
表示p等價(jià)于q,等價(jià)命題可以進(jìn)行相互轉(zhuǎn)化,當(dāng)我們要證明p成立時(shí),就可以轉(zhuǎn)化為證明q成立;
這里要注意原命題 逆否命題、逆命題 否命題只是等價(jià)形式之一,對(duì)于條件或結(jié)論是不等式關(guān)系(否定式)的命題一般應(yīng)用化歸思想.
6、數(shù)形結(jié)合思想:
利用韋恩圖(即集合的包含關(guān)系)來判斷充分不必要條件,必要不充分條件,充要條件.
三、基礎(chǔ)訓(xùn)練:
1、 設(shè)命題若p則q為假,而若q則p為真,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、 設(shè)集合M,N為是全集U的兩個(gè)子集,則 是 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
3、 若 是實(shí)數(shù),則 是 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
四、例題講解
例1 已知實(shí)系數(shù)一元二次方程 ,下列結(jié)論中正確的是 ( )
(1) 是這個(gè)方程有實(shí)根的充分不必要條件
(2) 是這個(gè)方程有實(shí)根的'必要不充分條件
(3) 是這個(gè)方程有實(shí)根的充要條件
(4) 是這個(gè)方程有實(shí)根的充分不必要條件
A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)
例2 (1)已知h 0,a,bR,設(shè)命題甲: ,命題乙: 且 ,問甲是乙的 ( )
(2)已知p:兩條直線的斜率互為負(fù)倒數(shù),q:兩條直線互相垂直,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
變式:a = 0是直線 與 平行的 條件;
例3 如果命題p、q都是命題r的必要條件,命題s是命題r的充分條件,命題q是命題s
的充分條件,那么命題p是命題q的 條件;命題s是命題q的 條件;命題r是命題q的 條件.
例4 設(shè)命題p:|4x-3| 1,命題q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分條件,求實(shí)數(shù)a的取值范圍;
例5 設(shè) 是方程 的兩個(gè)實(shí)根,試分析 是兩實(shí)根 均大于1的什么條件?并給予證明.
五、課堂練習(xí)
1、設(shè)命題p: ,命題q: ,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、給出以下四個(gè)命題:①若p則q②若﹁r則﹁q③ 若r則﹁s
④若﹁s則q若它們都是真命題,則﹁p是s的 條件;
3、是否存在實(shí)數(shù)p,使 是 的充分條件?若存在,求出p的取值范圍;若不存在說明理由.
六、課堂小結(jié):
七、教學(xué)后記:
教材分析:
本單元是非常有趣的數(shù)學(xué)活動(dòng),也是邏輯思維訓(xùn)練的起始課。邏輯推理能力是人們?cè)谏睢W(xué)習(xí)工作中很重要的能力。本單元主要要求學(xué)生能根據(jù)提供的信息,借助集合圈進(jìn)行判斷、推理,得出結(jié)論,使學(xué)生初步接觸和運(yùn)用集合圈分析問題、解決問題。教材試圖通過一些生動(dòng)有趣的簡單事例,運(yùn)用操作、實(shí)驗(yàn)、猜測等直觀手段解決這些問題,滲透數(shù)學(xué)的思想方法,初步培養(yǎng)學(xué)生借助幾何直觀思考問題的意識(shí)。
教學(xué)目標(biāo):
1、在具體情境中使學(xué)生感受集合的思想,感知集合圖的產(chǎn)生過程。
2、能借助直觀圖,利用集合的思想方法解決簡單的實(shí)際問題,同時(shí)使學(xué)生在解決問題的過程中進(jìn)一步體會(huì)集合的思想,進(jìn)而形成策略。
3、滲透多種方法解決重疊問題的意識(shí),培養(yǎng)學(xué)生善于觀察、勤于思考的學(xué)習(xí)習(xí)慣。
教學(xué)重點(diǎn):
讓學(xué)生感知集合的思想,并能初步用集合的思想解決簡單的實(shí)際問題。
教學(xué)難點(diǎn):
對(duì)重疊部分的理解。
課前準(zhǔn)備:
課件、呼啦圈2個(gè)、磁性圓片
教學(xué)過程:
一、創(chuàng)設(shè)探究情境,引領(lǐng)學(xué)生初步感知。
1、創(chuàng)設(shè)情境,激發(fā)興趣。
腦筋急轉(zhuǎn)彎:兩位爸爸和兩位兒子一同去海洋世界(每人都得買一張票),可是他們只買了3張票,便順利地進(jìn)去了。這是為什么?
學(xué)生活動(dòng):學(xué)生猜測各種可能性,你一言我一語地發(fā)表自己的高見。
2、設(shè)置懸念,引人入勝
師:“大家的猜測都有自己的道理,但答案到底是什么呢?暫時(shí)老師還不想告訴你們,我想通過下面的活動(dòng),大家一定能自己找到答案的?!?/p>
二、創(chuàng)設(shè)實(shí)踐情境,引領(lǐng)學(xué)生深入理解。
(一)報(bào)名參加數(shù)學(xué)比賽:四宮數(shù)獨(dú)和六宮數(shù)獨(dú)
1、師:三年級(jí)一班有3名學(xué)生報(bào)名參加了四宮數(shù)獨(dú),4名學(xué)生報(bào)名參加了六宮數(shù)獨(dú)。
2、出示參加四宮、六宮數(shù)獨(dú)比賽的學(xué)生名單:
四宮:子宜、佳琳、俊軒
六宮:子宜、曉晴、子凌、方華
3、數(shù)一數(shù),參加四宮的有幾位同學(xué)?(3人) 參加六宮的有幾位同學(xué)?(4人)師:一共有幾人參加比賽?
生:7人或6人。
師:究竟是6人?還是7人呢?我們請(qǐng)這些同學(xué)上臺(tái),讓我們一起數(shù)一數(shù),好嗎? 請(qǐng)以上名字的.同學(xué)上臺(tái)(同學(xué)們一起喊他們的名字)
四宮站在左邊,六宮站在右邊。(矛盾:子宜兩邊走)
師:子宜,為什么你要兩邊走呢?
同學(xué)們,出現(xiàn)這種情況,我們?cè)撛趺刺幚砟??同學(xué)們?cè)谛〗M里小聲地有序地說說自己的辦法。
4、小組討論:請(qǐng)想到方法的同學(xué)上臺(tái)進(jìn)行調(diào)整。(把重復(fù)參賽的同學(xué)放在兩圈的交叉位置,并說一說各個(gè)組的名單)
5、師:探究:如果我們不用語言和動(dòng)作,還可以用一種什么樣的方法來表示,“既能清楚地看出每個(gè)人的情況,又能明顯看出一共有多少人”呢?
學(xué)生小組合作想辦法。
請(qǐng)同學(xué)們?cè)诎准埳袭嬕划?,畫完后小組內(nèi)說說你是怎么表示的。(畫集合圖、韋恩圖)。 師生共同畫出集合圖(利用呼啦圈畫,板書)
師:你真有創(chuàng)意,只用簡簡單單的兩個(gè)圈,就把兩個(gè)組成員之間的關(guān)系表示出來了。這樣的圖我們把它叫做集合圖,今天我們學(xué)習(xí)的內(nèi)容就是數(shù)學(xué)廣角—— 集合。
(板書課題:數(shù)學(xué)廣角——集合)這種圖我們也叫它韋恩圖或文氏圖,因?yàn)樗鞘攀兰o(jì)英國數(shù)學(xué)家韋恩最先開始使用的,所以就以“韋恩”來命名了。
6、觀察黑板上的集合圖,讓學(xué)生了解集合圖各部分的意義。
師:誰來當(dāng)小老師,介紹一下集合圖中各個(gè)圈表示的意思???
7、三(1)班一共有多少人參加比賽?根據(jù)集合圖,列出算式。
小組討論:寫算式,并進(jìn)行匯報(bào)。(算法多樣化)
8、回顧剛才的做法:(課件)
三、能力提升。
1、提出問題。
師:如果三(2)班也有3名同學(xué)參加了四宮比賽,4名同學(xué)參加了六宮比賽,想一想,他們班可能會(huì)有多少人參加了比賽?
3、學(xué)生匯報(bào)。
學(xué)生觀察,說一說規(guī)律:各項(xiàng)目的總?cè)藬?shù) — 重復(fù)的人數(shù) = 參賽的總?cè)藬?shù)。
舉例:三年級(jí)一共有20人參加比賽,其中跳繩12人,跑步15人。問兩項(xiàng)都參加的幾人? 12+15-20=7(人)
四、創(chuàng)設(shè)拓展情境,引領(lǐng)學(xué)生形成策略。
1、現(xiàn)在,我們?cè)倩剡^頭去看看上課開始時(shí)老師給大家出的腦筋爭轉(zhuǎn)彎吧:兩位爸爸和兩位兒子一同去海洋極地世界(每人都得買一張票),可是他們只買了3張票,便順利地進(jìn)了電影院。這是為什么?
師:兩位爸爸和兩位兒子一共是幾個(gè)人?真有這么多人嗎?可能會(huì)有什么情況?
2、同學(xué)們排隊(duì)做操,小明排在從前數(shù)第9個(gè),從后數(shù)第7個(gè),小明這一排一共有多少個(gè)同學(xué)?
3、小調(diào)查:本班喜歡吃蘋果的有幾人,喜歡吃香蕉的有幾人?
(1)既喜歡吃蘋果又喜歡吃香蕉的有幾人?
(2)只喜歡吃蘋果的有幾人?
(3)只喜歡吃香蕉的有幾人?
先獨(dú)立思考,再與同桌交流解決問題的策略(引導(dǎo)學(xué)生借助重疊圖來理解算法),然后全班反饋。反饋時(shí)要求學(xué)生說出自己的理解。
五、自我小結(jié),共同提高
師:同學(xué)們今天表現(xiàn)都很突出,誰愿意來說說自己今天有什么收獲?和同學(xué)們一起分享。課后請(qǐng)大家留心觀察,用今天學(xué)習(xí)的知識(shí)還能解決生活中的哪些問題。
教學(xué)目標(biāo)
1.使學(xué)生掌握的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對(duì)底數(shù)的限制條件的合理性,明確的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識(shí)的性質(zhì).
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫出形如的圖象.
2.通過對(duì)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法.
3.通過對(duì)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.教學(xué)建議
教材分析
(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究.
(2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分.
(3)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是.
(2)對(duì)底數(shù)的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來.
關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.
重點(diǎn)難點(diǎn)教學(xué):
1.正確理解映射的概念;
2.函數(shù)相等的兩個(gè)條件;
3.求函數(shù)的定義域和值域。
教學(xué)過程:
1. 使學(xué)生熟練掌握函數(shù)的概念和映射的定義;
2. 使學(xué)生能夠根據(jù)已知條件求出函數(shù)的定義域和值域; 3. 使學(xué)生掌握函數(shù)的三種表示方法。
教學(xué)內(nèi)容:
1.函數(shù)的定義
設(shè)A、B是兩個(gè)非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)fx和它對(duì)應(yīng),那么稱:fAB81為從集合A到集合B的一個(gè)函數(shù)(function),記作:yfxxA
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對(duì)應(yīng)的y值叫函數(shù)值,函數(shù)值的集合{|}fxxA83叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素 定義域、對(duì)應(yīng)關(guān)系和值域。
3、映射的定義
設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意
一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A→B為從 集合A到集合B的一個(gè)映射。
4. 區(qū)間及寫法:
設(shè)a、b是兩個(gè)實(shí)數(shù),且a
(1) 滿足不等式axb8080的實(shí)數(shù)x的集合叫做閉區(qū)間,表示為[a,b];
(2) 滿足不等式axb8787的實(shí)數(shù)x的集合叫做開區(qū)間,表示為(a,b);
5.函數(shù)的三種表示方法
①解析法
②列表法
③圖像法
感謝您閱讀“幼兒教師教育網(wǎng)”的《高一數(shù)學(xué)必修一教案人教版(必備5篇)》一文,希望能解決您找不到幼兒園教案時(shí)遇到的問題和疑惑,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了高一數(shù)學(xué)教案專題,希望您能喜歡!
相關(guān)推薦
作為一位無私奉獻(xiàn)的人民教師,時(shí)常需要編寫教案,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量??靵韰⒖冀贪甘窃趺磳懙陌?!下面是小編為大家整理的人教版高一英語必修一教案,希望對(duì)大家有所幫助。高中英語新人教版必修一教案 篇1教學(xué)準(zhǔn)備教學(xué)目標(biāo)1). To learn the knowledge...
新高一數(shù)學(xué)必修一教案 篇1教學(xué)目標(biāo):1.讓學(xué)生經(jīng)歷韋恩圖的產(chǎn)生過程,能借助直觀圖,利用集合的思想方法解決簡單的實(shí)際問題。2.培養(yǎng)學(xué)生善于觀察、善于思考的學(xué)習(xí)習(xí)慣。使學(xué)生感受到數(shù)學(xué)在現(xiàn)實(shí)生活中的廣泛應(yīng)用,嘗試用數(shù)學(xué)的方法解決實(shí)際生活中的問題,體驗(yàn)解決問題策略的多樣性。教學(xué)重點(diǎn):讓學(xué)...
光陰如水,我們的教學(xué)工作又將翻開新的一頁,現(xiàn)在的你想必不是在做教學(xué)計(jì)劃,就是在準(zhǔn)備做教學(xué)計(jì)劃吧。但是教學(xué)計(jì)劃要寫什么內(nèi)容才能讓人眼前一亮呢?以下是小編為大家整理的2024年高一數(shù)學(xué)教學(xué)計(jì)劃(精選8篇),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。2024高中教案數(shù)學(xué)必修一 篇1一、教材分析1...
時(shí)間的腳步是無聲的,它在不經(jīng)意間流逝,新的機(jī)遇和挑戰(zhàn)向我們走來,讓我們對(duì)今后的教學(xué)工作做個(gè)計(jì)劃吧。如何把教學(xué)計(jì)劃寫出新花樣呢?以下是小編精心整理的2024年高一英語教學(xué)計(jì)劃(精選5篇),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。2024人教版高中英語必修一教案 篇1一、教材分析本學(xué)期按照新...
最新更新
熱門欄目