作為一位杰出的老師,時(shí)常需要編寫教案,教案有助于順利而有效地開展教學(xué)活動(dòng)。那么你有了解過(guò)教案嗎?以下是小編為大家收集的初中數(shù)學(xué)人教版教案優(yōu)秀,歡迎閱讀與收藏。
一.學(xué)生情況分析
學(xué)生已經(jīng)學(xué)習(xí)了平行四邊形的性質(zhì)和判定,也學(xué)習(xí)了一種特殊的平行四邊形菱形的性質(zhì)和判定,對(duì)于類似的問(wèn)題有一定的學(xué)習(xí)精力、經(jīng)驗(yàn)和感受,這將更有利于學(xué)生對(duì)本節(jié)課的學(xué)習(xí)。
二.教學(xué)任務(wù)分析
教學(xué)目標(biāo):
知識(shí)目標(biāo):
1.掌握正方形的定義,弄清正方形與平行四邊形、菱形、矩形的關(guān)系。
2.掌握正方形的性質(zhì)定理1和性質(zhì)定理2。
3.正確運(yùn)用正方形的性質(zhì)解題。
能力目標(biāo):
1.通過(guò)四邊形的從屬關(guān)系滲透集合思想。
2.在直觀操作活動(dòng)和簡(jiǎn)單的說(shuō)理過(guò)程中,發(fā)展學(xué)生初步的合情推理能力、主動(dòng)探究習(xí)慣,逐步掌握說(shuō)理的基本方法。
情感與價(jià)值觀
1.通過(guò)理解四種四邊形內(nèi)在聯(lián)系,培養(yǎng)學(xué)生辯證觀點(diǎn)
教學(xué)重點(diǎn):正方形的性質(zhì)的應(yīng)用.
教學(xué)難點(diǎn):正方形的性質(zhì)的應(yīng)用.
三、教學(xué)過(guò)程設(shè)計(jì)
課前準(zhǔn)備
教具準(zhǔn)備: 一個(gè)活動(dòng)的平行四邊形木框、白紙、剪刀.
學(xué)生用具:白紙、剪刀
教學(xué)過(guò)程設(shè)計(jì)分成四分環(huán)節(jié):
第一環(huán)節(jié):巧設(shè)情境問(wèn)題,引入課題
第二環(huán)節(jié):講授新課
第三環(huán)節(jié):新課小結(jié)
第四環(huán)節(jié):布置作業(yè)
第一環(huán)節(jié) 巧設(shè)情境問(wèn)題,引入課題
進(jìn)入正題,提出本節(jié)課的研究主題正方形
第二環(huán)節(jié) 講授新課
主要環(huán)節(jié)
(1)呈現(xiàn)兩種通過(guò)不同途徑得到正方形的過(guò)程,給正方形下定義
(2)討論正方形的性質(zhì)
(3)通過(guò)練習(xí)加強(qiáng)對(duì)正方形性質(zhì)的理解
(4)尋找平行四邊形、矩形、菱形、正方形之間的相互關(guān)系。
(5)尋找正方形的判定方法
目的:
1. 正方形是特殊的平行四邊形,也是特殊的矩形和菱形,因此想得到一個(gè)正方形,可以在矩形的基礎(chǔ)上強(qiáng)化邊的條件得到,也可以在菱形的基礎(chǔ)上強(qiáng)化角的條件得到。于是在課上呈現(xiàn)這兩種變化,為后面尋求平行四邊形、矩形、菱形、正方形的關(guān)系打下基礎(chǔ)。
2. 由于采用了兩種正方形形成的方式,因此正方形的性質(zhì)和判定方法都可以從中挖掘和發(fā)現(xiàn)。
大致教學(xué)過(guò)程
呈現(xiàn)一個(gè)平行四邊形變成正方形的全過(guò)程.(演示)
由于平行四邊形具有不穩(wěn)定性,所以先把平行四邊形木框的一個(gè)角變?yōu)橹苯牵僖苿?dòng)一條短邊,截成有一組鄰邊相等,此時(shí)平行四邊形變成了一個(gè)正方形.
這個(gè)變化過(guò)程,可用如下圖表示
由此可知:正方形是一組鄰邊相等的矩形.即:一組鄰邊相等的矩形叫做正方形.
這個(gè)平行四邊形木框還可以這樣變化:先移動(dòng)一條短邊,截成有一組鄰邊相等的平行四邊形,再把一個(gè)角變成直角,此時(shí)的平行四邊形也變成了正方形.
這個(gè)變化過(guò)程,也可用圖表示
你能根據(jù)上面的變化過(guò)程,給正方形下定義嗎?
一組鄰邊相等的平行四邊形是菱形.正方形是一個(gè)角為直角的'菱形,所以可以說(shuō):有一個(gè)角是直角的菱形叫做正方形.
由此可知:正方形是特殊的矩形,即是鄰邊相等的矩形,也是特殊的菱形,即是有一個(gè)角是直角的菱形.
因?yàn)檎叫问瞧叫兴倪呅巍⒘庑?、矩形,所以它的性質(zhì)是它們的綜合,不僅有平行四邊形的所有性質(zhì),也有矩形和菱形的特殊性質(zhì),即:正方形具有平行四邊形、菱形、矩形的一切性質(zhì).
正方形的`性質(zhì):
邊:對(duì)邊平行、四邊相等
角:四個(gè)角都是直角
對(duì)角線:對(duì)角線相等,互相垂直平分,每條對(duì)角線平分一組對(duì)角.
正方形是軸對(duì)稱圖形嗎?如是,它有幾條對(duì)稱軸?
正方形是軸對(duì)稱圖形,它有四條對(duì)稱軸,即:兩條對(duì)角線,兩組對(duì)邊的中垂線.
例題
[例1]如圖,四邊形ABCD是正方形,兩條對(duì)角線相交于點(diǎn)O,求AOB,OAB的度數(shù).
分析:本題是正方形的性質(zhì)的直接應(yīng)用.正方形的性質(zhì)很多,要恰當(dāng)運(yùn)用,本題主要用到正方形的對(duì)角線的性質(zhì),即正方形的軸對(duì)稱性.
解:正方形ABCD是菱形,對(duì)角線AC,BD一定互相垂直,所以AOB=90.正方形ABCD是矩形,又是菱形,所以:BAD=90且對(duì)角線AC平分BAD,因此:OAB=45
拿出準(zhǔn)備好的剪刀、白紙來(lái)做一做
將一張長(zhǎng)方形紙對(duì)折兩次,然后剪下一個(gè)角,打開,怎樣剪才能剪出一個(gè)正方形?(學(xué)生動(dòng)手折疊,想,剪切)
只要保證剪口線與折痕成45角即可.因?yàn)檎叫蔚膬蓷l對(duì)角線把它分成四個(gè)全等的等腰直角三角形,把折痕作對(duì)角線,這時(shí)只需剪一個(gè)等腰直角三角形,打開即是正方形.
正方形是平行四邊形、矩形、又是菱形,那么它們四者之間有何關(guān)系呢?
正方形、矩形、菱形及平行四邊形四者之間有什么關(guān)系呢?
它們的包含關(guān)系如圖:
此圖給出了正方形的判別條件,即怎樣判定一個(gè)平行四邊形是正方形?
先判定一個(gè)四邊形是平行四邊形,再判定這個(gè)平行四邊形是矩形,然后再判定這個(gè)矩形是菱形;或者先判定一個(gè)四邊形是菱形,再判定這個(gè)菱形是矩形.
由于判定平行四邊形、矩形、菱形的方法各異,所給出的條件不一樣,所以判定一個(gè)四邊形是不是正方形的具體條件相應(yīng)可作變化,在應(yīng)用時(shí)要仔細(xì)辨別后才可以作出判斷.
第三環(huán)節(jié) 課堂練習(xí)
教材 隨堂練習(xí)1,2
第四環(huán)節(jié) 課時(shí)小結(jié)
正方形的定義:一組鄰邊相等的矩形.
正方形的性質(zhì)與平行四邊形、矩形、菱形的性質(zhì)可比較如下:(出示小黑板)
第五環(huán)節(jié) 課后作業(yè)
課本習(xí)題4.7 1,2,3.
四.教學(xué)設(shè)計(jì)反思
在教材中,并沒(méi)有明確的給出正方形的判定定理。那么教師在課堂上應(yīng)該幫助學(xué)生理清思路,使他們明確判定的方法。
為了實(shí)現(xiàn)這個(gè)目標(biāo),在本節(jié)課的開始,教師就采取了兩種方式呈現(xiàn)正方形的形成過(guò)程,在直觀上幫助學(xué)生認(rèn)識(shí)了正方形與矩形、正方形與菱形之間的關(guān)系;在講解正方形性質(zhì)的過(guò)程中又再次強(qiáng)化了這種認(rèn)識(shí)。通過(guò)層層鋪墊,讓學(xué)生明確矩形+鄰邊相等就是正方形,菱形+一個(gè)直角就是正方形,如何判定圖形是矩形或是菱形,前面已經(jīng)學(xué)習(xí)過(guò),因此關(guān)于正方形的判定是需要一個(gè)條件一個(gè)條件“疊加”完成的。
教學(xué)目標(biāo):
1、掌握一元二次方程的根與系數(shù)的關(guān)系并會(huì)初步應(yīng)用。
2、培養(yǎng)學(xué)生分析、觀察、歸納的能力和推理論證的能力。
3、滲透由特殊到一般,再由一般到特殊的認(rèn)識(shí)事物的規(guī)律。
4、培養(yǎng)學(xué)生去發(fā)現(xiàn)規(guī)律的積極性及勇于探索的精神。
教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn)
根與系數(shù)的關(guān)系及其推導(dǎo)
難點(diǎn)
正確理解根與系數(shù)的關(guān)系。一元二次方程根與系數(shù)的關(guān)系是指一元二次方程兩根的和、兩根的積與系數(shù)的關(guān)系。
教學(xué)過(guò)程:
一、復(fù)習(xí)引入
1、已知方程x2-ax-3a=0的一個(gè)根是6,則求a及另一個(gè)根的值。
2、由上題可知一元二次方程的系數(shù)與根有著密切的關(guān)系。其實(shí)我們已學(xué)過(guò)的求根公式也反映了根與系數(shù)的關(guān)系,這種關(guān)系比較復(fù)雜,是否有更簡(jiǎn)潔的關(guān)系?
3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過(guò)什么計(jì)算才能得到更簡(jiǎn)潔的關(guān)系?
二、探索新知
解下列方程,并填寫表格:
方程x1 x2 x1+x2 x1x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
觀察上面的表格,你能得到什么結(jié)論?
(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q之間有什么關(guān)系?
(2)關(guān)于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數(shù)a,b,c之間又有何關(guān)系呢?你能證明你的猜想嗎?
解下列方程,并填寫表格:
方程x1 x2 x1+x2 x1x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小結(jié):根與系數(shù)關(guān)系:
(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q的關(guān)系是:x1+x2=-p,x1x2=q(注意:根與系數(shù)關(guān)系的前提條件是根的判別式必須大于或等于零。)
(2)形如ax2+bx+c=0(a≠0)的'方程,可以先將二次項(xiàng)系數(shù)化為1,再利用上面的結(jié)論。
即:對(duì)于方程ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1x2=ca
(可以利用求根公式給出證明)
例1不解方程,寫出下列方程的兩根和與兩根積:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2不解方程,檢驗(yàn)下列方程的解是否正確?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3已知一元二次方程的兩個(gè)根是-1和2,請(qǐng)你寫出一個(gè)符合條件的方程。(你有幾種方法?)
例4已知方程2x2+kx-9=0的一個(gè)根是-3,求另一根及k的值。
變式一:已知方程x2-2kx-9=0的兩根互為相反數(shù),求k;
變式二:已知方程2x2-5x+k=0的兩根互為倒數(shù),求k.
三、課堂小結(jié)
1、根與系數(shù)的關(guān)系。
2、根與系數(shù)關(guān)系使用的前提是:
(1)是一元二次方程;
(2)判別式大于等于零。
四、作業(yè)布置
1、不解方程,寫出下列方程的兩根和與兩根積。
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2、已知方程x2-3x+m=0的一個(gè)根為1,求另一根及m的值。
3、已知方程x2+bx+6=0的一個(gè)根為-2,求另一根及b的值
教學(xué)目標(biāo)
1.經(jīng)歷不同的拼圖方法驗(yàn)證公式的過(guò)程,在此過(guò)程中加深對(duì)因式分解、整式運(yùn)算、面積等的認(rèn)識(shí)。
2.通過(guò)驗(yàn)證過(guò)程中數(shù)與形的結(jié)合,體會(huì)數(shù)形結(jié)合的思想以及數(shù)學(xué)知識(shí)之間內(nèi)在聯(lián)系,每一部分知識(shí)并不是孤立的。
3.通過(guò)豐富有趣的拼圖活動(dòng),經(jīng)歷觀察、比較、拼圖、計(jì)算、推理交流等過(guò)程,發(fā)展空間觀念和有條理地思考和表達(dá)的能力,獲得一些研究問(wèn)題與合作交流方法與經(jīng)驗(yàn)。
4.通過(guò)獲得成功的體驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。通過(guò)豐富有趣拼的圖活動(dòng)增強(qiáng)對(duì)數(shù)學(xué)學(xué)習(xí)的興趣。
重點(diǎn)
1.通過(guò)綜合運(yùn)用已有知識(shí)解決問(wèn)題的過(guò)程,加深對(duì)因式分解、整式運(yùn)算、面積等的認(rèn)識(shí)。
2.通過(guò)拼圖驗(yàn)證公式的過(guò)程,使學(xué)習(xí)獲得一些研究問(wèn)題與合作交流的方法與經(jīng)驗(yàn)。
難點(diǎn)
利用數(shù)形結(jié)合的方法驗(yàn)證公式
教學(xué)方法
動(dòng)手操作,合作探究課型新授課教具投影儀
教師活動(dòng)學(xué)生活動(dòng)
情景設(shè)置:
你已知道的關(guān)于驗(yàn)證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨(dú)立思考和討論的時(shí)間,讓學(xué)生回想前面拼圖。)
新課講解:
把幾個(gè)圖形拼成一個(gè)新的圖形,再通過(guò)圖形面積的計(jì)算,常常可以得到一些有用的式子。美國(guó)第二十任總統(tǒng)伽菲爾德就由這個(gè)圖(由兩個(gè)邊長(zhǎng)分別為a、b、c的直角三角形和一個(gè)兩條直角邊都是c的直角三角形拼成一個(gè)新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁(yè)例題的拼法及相關(guān)公式
提問(wèn):還能通過(guò)怎樣拼圖來(lái)解決以下問(wèn)題yjS21.COm
(1)任意選取若干塊這樣的硬紙片,嘗試拼成一個(gè)長(zhǎng)方形,計(jì)算它的面積,并寫出相應(yīng)的等式;
(2)任意寫出一個(gè)關(guān)于a、b的二次三項(xiàng)式,如a2+4ab+3b2
試用拼一個(gè)長(zhǎng)方形的'方法,把這個(gè)二次三項(xiàng)式因式分解。
這個(gè)問(wèn)題要給予學(xué)生充足的時(shí)間和空間進(jìn)行討論和拼圖,教師在這要引導(dǎo)適度,不要限制學(xué)生思維,同時(shí)鼓勵(lì)學(xué)生在拼圖過(guò)程中進(jìn)行交流合作
了解學(xué)生拼圖的情況及利用自己的拼圖驗(yàn)證的情況。教師在巡視過(guò)程中,及時(shí)指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗(yàn)證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。
小結(jié):
從這節(jié)課中你有哪些收獲?
(教師應(yīng)給予學(xué)生充分的時(shí)間鼓勵(lì)學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵(lì)、多肯定。最后,教師要對(duì)學(xué)生所說(shuō)的進(jìn)行全面的總結(jié)。)
學(xué)生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
學(xué)生拿出準(zhǔn)備好的硬紙板制作
給學(xué)生充分的時(shí)間進(jìn)行拼圖、思考、交流經(jīng)驗(yàn),對(duì)于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。
作業(yè)第95頁(yè)第3題
板書設(shè)計(jì)
復(fù)習(xí)例1板演
………………
………………
……例2……
………………
………………
教學(xué)后記
一.教學(xué)目標(biāo)
1.知識(shí)與技能
(1)通過(guò)足球賽中的凈勝球數(shù),使學(xué)生掌握有理數(shù)加法法則,并能運(yùn)用法則進(jìn)行計(jì)算;
(2)在有理數(shù)加法法則的教學(xué)過(guò)程中,注意培養(yǎng)學(xué)生的運(yùn)算能力.
2.?dāng)?shù)學(xué)思考
通過(guò)觀察,比較,歸納等得出有理數(shù)加法法則。
3.解決問(wèn)題
能運(yùn)用有理數(shù)加法法則解決實(shí)際問(wèn)題。
4.情感與態(tài)度
認(rèn)識(shí)到通過(guò)師生合作交流,學(xué)生主動(dòng)叁與探索獲得數(shù)學(xué)知識(shí),從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
5.重點(diǎn)
會(huì)用有理數(shù)加法法則進(jìn)行運(yùn)算.
6.難點(diǎn)
異號(hào)兩數(shù)相加的法則.
二.教材分析
“有理數(shù)的加法”是人教版七年級(jí)數(shù)學(xué)上冊(cè)第一章有理數(shù)的第三節(jié)內(nèi)容,本節(jié)內(nèi)容安排四個(gè)課時(shí),本課時(shí)是本節(jié)內(nèi)容的第一課時(shí),本課設(shè)計(jì)主要是通過(guò)球賽中凈勝球數(shù)的實(shí)例來(lái)明確有理數(shù)加法的意義,引入有理數(shù)加法的法則,為今后學(xué)習(xí)“有理數(shù)的減法”做鋪墊。
三.學(xué)校與學(xué)生情況分析
沖坡中學(xué)是樂(lè)東縣利國(guó)鎮(zhèn)的一所完全中學(xué),學(xué)生都來(lái)自農(nóng)村,學(xué)生的基礎(chǔ)及學(xué)習(xí)習(xí)慣是比較差。學(xué)生對(duì)新的課堂教學(xué)方法不是很適應(yīng);不過(guò),在新的教學(xué)理念的指導(dǎo)下,舊的教學(xué)方法和學(xué)習(xí)方法逐步淡化,而是培養(yǎng)學(xué)生的觀察,比較,歸納及自主探索和合作交流能力?,F(xiàn)在,班級(jí)中已初步形成合作交流和勇于探究的良好學(xué)風(fēng),學(xué)生間互相評(píng)價(jià)和師生互動(dòng)的課堂氣氛已逐步形成。
四.教學(xué)過(guò)程
(一)問(wèn)題與情境
我們已經(jīng)熟悉正數(shù)的運(yùn)算,然而實(shí)際問(wèn)題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,通常把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫作凈勝球數(shù)。章前言中,紅隊(duì)進(jìn)4個(gè)球,失2個(gè)球;藍(lán)隊(duì)進(jìn)1個(gè)球,失1個(gè)球。于是紅隊(duì)的凈勝球?yàn)?/p>
4+(-2),黃隊(duì)的凈勝球?yàn)?+(-1)。
這里用到正數(shù)與負(fù)數(shù)的加法。
(二)、師生共同探究有理數(shù)加法法則
前面我們學(xué)習(xí)了有關(guān)有理數(shù)的一些基礎(chǔ)知識(shí),從今天起開始學(xué)習(xí)有理數(shù)的運(yùn)算.這節(jié)課我們來(lái)研究?jī)蓚€(gè)有理數(shù)的加法.
兩個(gè)有理數(shù)相加,有多少種不同的情形?
為此,我們來(lái)看一個(gè)大家熟悉的實(shí)際問(wèn)題:
足球比賽中贏球個(gè)數(shù)與輸球個(gè)數(shù)是相反意義的量.若我們規(guī)定贏球?yàn)椤罢保斍驗(yàn)椤柏?fù)”,打平為“0”.比如,贏3球記為+3,輸1球記為-1.學(xué)校足球隊(duì)在一場(chǎng)比賽中的勝負(fù)可能有以下各種不同的情形:
(1)上半場(chǎng)贏了3球,下半場(chǎng)贏了1球,那么全場(chǎng)共贏了4球.也就是
(+3)+(+1)=+4.
(2)上半場(chǎng)輸了2球,下半場(chǎng)輸了1球,那么全場(chǎng)共輸了3球.也就是
(-2)+(-1)=-3.
現(xiàn)在,請(qǐng)同學(xué)們說(shuō)出其他可能的情形.
答:上半場(chǎng)贏了3球,下半場(chǎng)輸了2球,全場(chǎng)贏了1球,也就是
(+3)+(-2)=+1;
上半場(chǎng)輸了3球,下半場(chǎng)贏了2球,全場(chǎng)輸了1球,也就是
(-3)+(+2)=-1;
上半場(chǎng)贏了3球下半場(chǎng)不輸不贏,全場(chǎng)仍贏3球,也就是
(+3)+0=+3;
上半場(chǎng)輸了2球,下半場(chǎng)兩隊(duì)都沒(méi)有進(jìn)球,全場(chǎng)仍輸2球,也就是
(-2)+0=-2;
上半場(chǎng)打平,下半場(chǎng)也打平,全場(chǎng)仍是平局,也就是
0+0=0.
上面我們列出了兩個(gè)有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和.但是,要計(jì)算兩個(gè)有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在請(qǐng)同學(xué)們仔細(xì)觀察比較這7個(gè)算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運(yùn)算法則嗎?也就是結(jié)果的符號(hào)怎么定?絕對(duì)值怎么算?
這里,先讓學(xué)生思考,師生交流,再由學(xué)生自己歸納出有理數(shù)加法法則:
1.同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
2.絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值,互為相反數(shù)的兩個(gè)數(shù)相加得0;
3.一個(gè)數(shù)同0相加,仍得這個(gè)數(shù).
(三)、應(yīng)用舉例 變式練習(xí)
例1 口答下列算式的結(jié)果
(1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4);
(5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0.
學(xué)生逐題口答后,師生共同得出
進(jìn)行有理數(shù)加法,先要判斷兩個(gè)加數(shù)是同號(hào)還是異號(hào),有一個(gè)加數(shù)是否為零;再根據(jù)兩個(gè)加數(shù)符號(hào)的具體情況,選用某一條加法法則.進(jìn)行計(jì)算時(shí),通常應(yīng)該先確定“和”的符號(hào),再計(jì)算“和”的絕對(duì)值.
例2(教科書的例1)
解:(1)(-3)+(-9) (兩個(gè)加數(shù)同號(hào),用加法法則的第2條計(jì)算)
=-(3+9) (和取負(fù)號(hào),把絕對(duì)值相加)
=-12.
(2)(-4.7)+3.9 (兩個(gè)加數(shù)異號(hào),用加法法則的第2條計(jì)算)
=-(4.7-3.9) (和取負(fù)號(hào),把大的.絕對(duì)值減去小的絕對(duì)值)
=-0.8
例3(教科書的例2)教師在算出紅隊(duì)的凈勝球數(shù)后,學(xué)生自己算黃隊(duì)和藍(lán)隊(duì)的凈勝球數(shù)
下面請(qǐng)同學(xué)們計(jì)算下列各題以及教科書第23頁(yè)練習(xí)第1與第2題
(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
學(xué)生書面練習(xí),四位學(xué)生板演,教師巡視指導(dǎo),學(xué)生交流,師生評(píng)價(jià)。
(四)、小結(jié)
1.本節(jié)課你學(xué)到了什么?
2.本節(jié)課你有什么感受?(由學(xué)生自己小結(jié))
(五)練習(xí)設(shè)計(jì)
1.計(jì)算:
(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);
(5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+37.
2.計(jì)算:
(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;
(4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);
(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.
4.用“>”或“<”號(hào)填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.
五.教學(xué)反思
“有理數(shù)的加法”的教學(xué),可以有多種不同的設(shè)計(jì)方案.大體上可以分為兩類:一類是較快地由教師給出法則,用較多的時(shí)間(30分鐘以上)組織學(xué)生練習(xí),以求熟練地掌握法則;另一類是適當(dāng)加強(qiáng)法則的形成過(guò)程,從而在此過(guò)程中著力培養(yǎng)學(xué)生的觀察、比較、歸納能力,相應(yīng)地適當(dāng)壓縮應(yīng)用法則的`練習(xí),如本教學(xué)設(shè)計(jì).
現(xiàn)在,試比較這兩類教學(xué)設(shè)計(jì)的得失利弊.
第一種方案,教學(xué)的重點(diǎn)偏重于讓學(xué)生通過(guò)練習(xí),熟悉法則的應(yīng)用,這種教法近期效果較好.
第二種方案,注重引導(dǎo)學(xué)生參與探索、歸納有理數(shù)加法法則的過(guò)程,主動(dòng)獲取知識(shí).這樣,學(xué)生在這節(jié)課上不僅學(xué)懂了法則,而且能感知到研究數(shù)學(xué)問(wèn)題的一些基本方法.
這種方案減少了應(yīng)用法則進(jìn)行計(jì)算的練習(xí),所以學(xué)生掌握法則的熟練程度可能稍差,這是教學(xué)中應(yīng)當(dāng)注意的問(wèn)題.但是,在后續(xù)的教學(xué)中學(xué)生將千萬(wàn)次應(yīng)用“有理數(shù)加法法則”進(jìn)行計(jì)算,故這種缺陷是可以得到彌補(bǔ)的.第一種方案削弱了得出結(jié)論的“過(guò)程”,失去了培養(yǎng)學(xué)生觀察、比較、歸納能力的一次機(jī)會(huì).權(quán)衡利弊,我們主張采用第二種教學(xué)方法。
六.點(diǎn)評(píng)
潘老師對(duì)本節(jié)課的設(shè)計(jì)是比較好的,體現(xiàn)學(xué)生是學(xué)習(xí)的主人,教師是教學(xué)活動(dòng)的組織者,引導(dǎo)者和叁與者。的確,新課程的實(shí)施給教師提出了全新的挑戰(zhàn)。在新課程中,教學(xué)觀念的轉(zhuǎn)變和課程意識(shí)的建立是首要的,教學(xué)不是教“教科書”,而是經(jīng)由“教科書”來(lái)教,新課程給教師留下了廣闊的空間,教師在教學(xué)中要站在課程標(biāo)準(zhǔn)的角度挖掘教材,把教材內(nèi)容與學(xué)生感興趣的事物結(jié)合起來(lái),寓教于樂(lè),充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。
問(wèn)題描述:
初中數(shù)學(xué)教學(xué)案例
初中的,隨便那個(gè)年級(jí).2000字.案例和反思
1個(gè)回答分類:數(shù)學(xué)2014-11-30
問(wèn)題解答:
我來(lái)補(bǔ)答
2.3平行線的性質(zhì)
一、教材分析:
本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(五四學(xué)制)七年級(jí)上冊(cè)第2章第3節(jié)平行線的性質(zhì),它是平行線及直線平行的繼續(xù),是后面研究平移等內(nèi)容的基礎(chǔ),是“空間與圖形”的重要組成部分.
二、教學(xué)目標(biāo):
知識(shí)與技能:掌握平行線的性質(zhì),能應(yīng)用性質(zhì)解決相關(guān)問(wèn)題.
數(shù)學(xué)思考:在平行線的性質(zhì)的探究過(guò)程中,讓學(xué)生經(jīng)歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過(guò)程.
解決問(wèn)題:通過(guò)探究平行線的性質(zhì),使學(xué)生形成數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及建模能力、創(chuàng)新意識(shí)和創(chuàng)新精神.
情感態(tài)度與價(jià)值觀:在探究活動(dòng)中,讓學(xué)生獲得親自參與研究的情感體驗(yàn),從而增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和勇于探索、鍥而不舍的精神.
三、教學(xué)重、難點(diǎn):
重點(diǎn):平行線的性質(zhì)
難點(diǎn):“性質(zhì)1”的探究過(guò)程
四、教學(xué)方法:
“引導(dǎo)發(fā)現(xiàn)法”與“動(dòng)像探索法”
五、教具、學(xué)具:
教具:多媒體課件
學(xué)具:三角板、量角器.
六、教學(xué)媒體:大屏幕、實(shí)物投影
七、教學(xué)過(guò)程:
(一)創(chuàng)設(shè)情境,設(shè)疑激思:
1.播放一組幻燈片.內(nèi)容:①火車行駛在鐵軌上;②游泳池;③橫格紙.
2.聲音:日常生活中我們經(jīng)常會(huì)遇到平行線,你能說(shuō)出直線平行的條件嗎?
學(xué)生活動(dòng):
思考回答.①同位角相等兩直線平行;②內(nèi)錯(cuò)角相等兩直線平行;③同旁內(nèi)角互補(bǔ)兩直線平行;
教師:首先肯定學(xué)生的回答,然后提出問(wèn)題.
問(wèn)題:若兩直線平行,那么同位角、內(nèi)錯(cuò)角、同旁內(nèi)角各有什么關(guān)系呢?
引出課題——平行線的性質(zhì).
(二)數(shù)形結(jié)合,探究性質(zhì)
1.畫圖探究,歸納猜想
任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標(biāo)出8個(gè)角(如圖).
問(wèn)題一:指出圖中的同位角,并度量這些角,把結(jié)果填入下表:
第一組
第二組
第三組
第四組
同位角
∠1
∠5
角的度數(shù)
數(shù)量關(guān)系
學(xué)生活動(dòng):畫圖——度量——填表——猜想
結(jié)論:兩直線平行,同位角相等.
問(wèn)題二:再畫出一條截線d,看你的猜想結(jié)論是否仍然成立?
學(xué)生:探究、討論,最后得出結(jié)論:仍然成立.
2.教師用《幾何畫板》課件驗(yàn)證猜想
3.性質(zhì)1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)
(三)引申思考,培養(yǎng)創(chuàng)新
問(wèn)題三:請(qǐng)判斷內(nèi)錯(cuò)角、同旁內(nèi)角各有什么關(guān)系?
學(xué)生活動(dòng):獨(dú)立探究——小組討論——成果展示.
教師活動(dòng):引導(dǎo)學(xué)生說(shuō)理.
因?yàn)閍‖b因?yàn)閍‖b
所以∠1=∠2所以∠1=∠2
又∠1=∠3又∠1+∠4=180°
所以∠2=∠3所以∠2+∠4=180°
語(yǔ)言敘述:
性質(zhì)2兩條直線被第三條直線所截,內(nèi)錯(cuò)角相等.
(兩直線平行,內(nèi)錯(cuò)角相等)
性質(zhì)3兩條直線被第三條直線所截,同旁內(nèi)角互補(bǔ).
(兩直線平行,同旁內(nèi)角互補(bǔ))
(四)實(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)
1.(搶答)
(1)如圖,平行線AB、CD被直線AE所截
①若∠1=110°,則∠2=°.理由:.
②若∠1=110°,則∠3=°.理由:.
③若∠1=110°,則∠4=°.理由:.
(2)如圖,由AB‖CD,可得()
(A)∠1=∠2(B)∠2=∠3
(C)∠1=∠4(D)∠3=∠4
(3)如圖,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=()
(A)180°(B)270°(C)360°(D)540°
(4)誰(shuí)問(wèn)誰(shuí)答:如圖,直線a‖b,
如:∠1=54°時(shí),∠2=.
學(xué)生提問(wèn),并找出回答問(wèn)題的同學(xué).
2.(討論解答)
如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,
∠B=115°,求梯形另外兩角分別是多少度?
(五)概括存儲(chǔ)(小結(jié))
1.平行線的性質(zhì)1、2、3;
2.用“運(yùn)動(dòng)”的觀點(diǎn)觀察數(shù)學(xué)問(wèn)題;
3.用數(shù)形結(jié)合的方法來(lái)解決問(wèn)題.
(六)作業(yè)第69頁(yè)2、4、7.
八、教學(xué)反思:
①教的轉(zhuǎn)變:本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者.在引導(dǎo)學(xué)生畫圖、測(cè)量、發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地、動(dòng)態(tài)地展示同位角的關(guān)系,激發(fā)學(xué)生自覺(jué)地探究數(shù)學(xué)問(wèn)題,體驗(yàn)發(fā)現(xiàn)的樂(lè)趣.
②學(xué)的轉(zhuǎn)變:學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué).本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)的層面上,而是站在研究者的角度深入其境.
③課堂氛圍的轉(zhuǎn)變:整節(jié)課以“流暢、開放、合作、‘隱’導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維活動(dòng)減少干預(yù),教學(xué)過(guò)程呈現(xiàn)一種比較流暢的特征,整節(jié)課學(xué)生與學(xué)生、學(xué)生與教師之間以“對(duì)話”、“討論”為出發(fā)點(diǎn),以互助、合作為手段,以解決問(wèn)題為目的,讓學(xué)生在一個(gè)較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值.
一、教學(xué)目標(biāo):
1、知道一次函數(shù)與正比例函數(shù)的定義。
2、理解掌握一次函數(shù)的圖象的特征和相關(guān)的性質(zhì)。
3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系。
4、掌握直線的平移法則簡(jiǎn)單應(yīng)用。
5、能應(yīng)用本章的基礎(chǔ)知識(shí)熟練地解決數(shù)學(xué)問(wèn)題。
二、教學(xué)重、難點(diǎn):
重點(diǎn):初步構(gòu)建比較系統(tǒng)的函數(shù)知識(shí)體系。
難點(diǎn):對(duì)直線的平移法則的理解,體會(huì)數(shù)形結(jié)合思想。
三、教學(xué)過(guò)程:
1、一次函數(shù)與正比例函數(shù)的定義:
一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)。
正比例函數(shù):對(duì)于y=kx+b,當(dāng)b=0,k≠0時(shí),有y=kx,此時(shí)稱y是x的正比例函數(shù),k為正比例系數(shù)。
2、一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:
(1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。
(2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過(guò)原點(diǎn)(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過(guò)點(diǎn)(0,b)且與y=kx
平行的一條直線。
基礎(chǔ)訓(xùn)練:
1、寫出一個(gè)圖象經(jīng)過(guò)點(diǎn)(1,—3)的函數(shù)解析式為:
2、直線y=—2X—2不經(jīng)過(guò)第象限,y隨x的增大而。
3、如果P(2,k)在直線y=2x+2上,那么點(diǎn)P到x軸的距離是:
4、已知正比例函數(shù)y=(3k—1)x,,若y隨x的增大而增大,則k是:
5、過(guò)點(diǎn)(0,2)且與直線y=3x平行的直線是:
6、若正比例函數(shù)y=(1—2m)x的圖像過(guò)點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)當(dāng)x1<x2時(shí),y1>y2,則m的取值范圍是:
7、若y—2與x—2成正比例,當(dāng)x=—2時(shí),y=4,則x=時(shí),y=—4。
8、直線y=—5x+b與直線y=x—3都交y軸上同一點(diǎn),則b的值為。
9、已知圓O的半徑為1,過(guò)點(diǎn)A(2,0)的直線切圓O于點(diǎn)B,交y軸于點(diǎn)C。
(1)求線段AB的長(zhǎng)。
(2)求直線AC的解析式。
在教學(xué)過(guò)程中,很多教師總認(rèn)為自己在上課中講得井井有條,知識(shí)條理十分透徹,演算透徹清晰,但結(jié)果是有大多數(shù)學(xué)生不能舉一反三,數(shù)學(xué)學(xué)習(xí)困難重重。產(chǎn)生這種現(xiàn)象的原因,多數(shù)教師都?xì)w因于學(xué)生素質(zhì)差、家庭教育環(huán)境不良等教師以外的因素,很少發(fā)現(xiàn)是自己教學(xué)能力和素養(yǎng)導(dǎo)致而成。
課堂教學(xué)是師生的雙邊活動(dòng)。課堂教學(xué)的實(shí)質(zhì)是師生雙方的信息交流,共同學(xué)校的過(guò)程。教師得知學(xué)生在數(shù)學(xué)學(xué)習(xí)很困難時(shí),是否想到了可能教師自己對(duì)教材理解不夠,沒(méi)有準(zhǔn)確地把握教材的重點(diǎn)、難點(diǎn),對(duì)教材內(nèi)容層次沒(méi)有理清和教學(xué)方法不適呢?《數(shù)學(xué)課程標(biāo)準(zhǔn)》指導(dǎo)下,我們的數(shù)學(xué)教學(xué)目的是要學(xué)生在數(shù)學(xué)學(xué)習(xí)中,由“聽”到“懂”,再到“會(huì)”,最后到“通”。為此,教師必須深刻反思自己的教育教學(xué)行為,批判性地考察自我主體行為表現(xiàn)及其行為依據(jù)。通過(guò)觀察、回顧、診斷、自我監(jiān)控等方式,或給予肯定、支持與強(qiáng)化,或給予否定、思索與修正,將“學(xué)會(huì)教學(xué)”與“學(xué)會(huì)學(xué)習(xí)”結(jié)合起來(lái),從而努力提升教學(xué)實(shí)踐的合理性,提高課堂教學(xué)效能,到達(dá)提高教學(xué)質(zhì)量的目的?,F(xiàn)就以下幾方面談?wù)勛约旱目捶ā?/p>
一、教師要反思教育觀念
新課標(biāo)下要求教師要改變學(xué)科的教育觀,始終體現(xiàn)“學(xué)生是教學(xué)活動(dòng)的主體”科學(xué)理念,著眼于學(xué)生的終身發(fā)展,注重培養(yǎng)學(xué)生濃厚的學(xué)習(xí)興趣和正確的學(xué)習(xí)習(xí)慣。數(shù)學(xué)非常重視教學(xué)內(nèi)容與實(shí)際生活的緊密聯(lián)系。但是在教學(xué)活動(dòng)中還是有不少教師習(xí)慣于傳統(tǒng)的教學(xué)模式,偏重于知識(shí)的傳授,強(qiáng)調(diào)接受式學(xué)習(xí),這樣使很多學(xué)生在學(xué)習(xí)數(shù)學(xué)上失去了興趣。教學(xué)中教師要抓住時(shí)機(jī),不斷地引導(dǎo)學(xué)生在設(shè)疑、質(zhì)疑、解疑的過(guò)程中,創(chuàng)設(shè)認(rèn)知“沖突”,激發(fā)學(xué)生持續(xù)的學(xué)習(xí)興趣和求知欲望,順利地建立數(shù)學(xué)概念,把握數(shù)學(xué)定義、定理和規(guī)律。
教師在探究教學(xué)中要立足與培養(yǎng)學(xué)生的獨(dú)立性和自主性,引導(dǎo)他們質(zhì)疑、調(diào)查和探究,學(xué)會(huì)在實(shí)踐中學(xué),在合作中學(xué),逐步形成適合于自己的學(xué)習(xí)策略。例如,在學(xué)習(xí)等腰三角形三線合一的性質(zhì)時(shí)可以讓三個(gè)同學(xué)合作分別去畫出頂角平分線、底邊上的高、底邊上的中線,這是學(xué)生會(huì)發(fā)現(xiàn)三條線為什么會(huì)是一條線?證明三角形全等的方法有多種,為什么“角邊邊”不能判定兩三角形全等?在學(xué)習(xí)鑲嵌時(shí),可以提這樣的問(wèn)題,為什么正三角形、正方形、長(zhǎng)方形正六邊形可以,而正五邊形不可以?等等。
這樣教師不斷地設(shè)問(wèn),不斷地質(zhì)疑,就能引導(dǎo)學(xué)生進(jìn)行積極思考,激發(fā)起學(xué)生濃厚的學(xué)習(xí)興趣和求知欲望,促使學(xué)生在生活中發(fā)現(xiàn)和歸納各種各樣的數(shù)學(xué)規(guī)律,為下一步學(xué)習(xí)數(shù)學(xué)知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。所以我們的教師必須反思自己的教育觀念,緊緊抓住主導(dǎo)和主體的關(guān)系,解決好學(xué)生學(xué)習(xí)積極性的問(wèn)題。
二、教師要反思教學(xué)設(shè)計(jì)
教學(xué)設(shè)計(jì)是課堂教學(xué)的藍(lán)本,是對(duì)課堂教學(xué)的整體規(guī)劃和預(yù)設(shè),勾勒出了課堂教學(xué)活動(dòng)的效益取向。設(shè)計(jì)教學(xué)方案時(shí),教師對(duì)當(dāng)前的教學(xué)內(nèi)容及其地位(概念的“解構(gòu)”、思想方法的“析出”、相關(guān)知識(shí)的聯(lián)系方式等),學(xué)生已有知識(shí)經(jīng)驗(yàn),教學(xué)目的,重點(diǎn)與難點(diǎn),如何依據(jù)學(xué)生已有認(rèn)知水平和知識(shí)的邏輯過(guò)程設(shè)計(jì)教學(xué)過(guò)程,如何突出重點(diǎn)和突破難點(diǎn),學(xué)生在理解概念和思想方法時(shí)可能會(huì)出現(xiàn)哪些情況以及如何處理這些情況,設(shè)計(jì)哪些練習(xí)以鞏固新知識(shí),如何評(píng)價(jià)學(xué)生的學(xué)習(xí)效果等,都應(yīng)該有一定的思考和預(yù)設(shè)。教學(xué)設(shè)計(jì)的反思就是對(duì)這些思考和預(yù)設(shè)是否考慮到了。教學(xué)后,要對(duì)實(shí)際進(jìn)程和學(xué)生的接受程度進(jìn)行比較和反思,找出成功和不足之處及其原因,從而有效地改進(jìn)教學(xué)。
三、教師要反思教學(xué)方法
教師教得好,本質(zhì)上講是學(xué)生學(xué)得好。在實(shí)際教學(xué)過(guò)程中我們的教學(xué)方法是否合乎學(xué)生實(shí)際呢?上課、評(píng)卷、答疑解難時(shí),有的教師自以為講清楚明白了,學(xué)生受到了一定的啟發(fā),但反思后發(fā)現(xiàn),教師的講解并沒(méi)有很好地從學(xué)生原有的知識(shí)基礎(chǔ)出發(fā),從根本上解決學(xué)生認(rèn)識(shí)上鴻溝問(wèn)題。有的教師只是一味的設(shè)想按照自己某個(gè)固定的程序去解決某一類問(wèn)題,也許學(xué)生當(dāng)時(shí)聽明白了,但往往是是而非,并沒(méi)有真正理解問(wèn)題的本質(zhì)。
初中數(shù)學(xué)教學(xué)中,例習(xí)題教學(xué)是數(shù)學(xué)教學(xué)中重要的組成部分,是概念類教學(xué)的延伸和發(fā)展。教材中的例習(xí)題都是編者精心編制的,具有典型性和啟發(fā)性,它們不僅是對(duì)基礎(chǔ)知識(shí)的鞏固,同時(shí)對(duì)培養(yǎng)學(xué)生智力、掌握數(shù)學(xué)思想和方法,及培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)意識(shí)和能力,提高學(xué)生的數(shù)學(xué)素養(yǎng)等都有重要意義。
四、教師要反思學(xué)生學(xué)習(xí)方法
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出,有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不能單純依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式,因此,轉(zhuǎn)變數(shù)學(xué)學(xué)習(xí)方式,倡導(dǎo)有意義的學(xué)習(xí)方式是課程改革的核心任務(wù)。初中學(xué)生年齡一般在十二至十六歲之間,正處生長(zhǎng)發(fā)育期,思想不成熟,行為不穩(wěn)定,辦事情緒化,喜表露,易沖動(dòng),既有面見(jiàn)師長(zhǎng)的羞澀,有初生牛犢不怕虎的習(xí)性。在數(shù)學(xué)學(xué)習(xí)上憑興趣,看心情,個(gè)性反映較為突出,有不少學(xué)生學(xué)習(xí)方法也存在一定的問(wèn)題。同時(shí)他們往往又很難發(fā)現(xiàn)自己的學(xué)習(xí)方法不妥。所以,教師就應(yīng)該反思學(xué)生的學(xué)習(xí)方法,找一找哪些問(wèn)題,并幫助他們努力改變不恰當(dāng)?shù)姆椒?,使學(xué)生達(dá)到《新課標(biāo)》的要求。
總之,為學(xué)之道,必本與思,思則得之,不思則不得。教學(xué)也是這個(gè)規(guī)律,只教不思就會(huì)成為教死書的教書匠,學(xué)生也得不到很好的受益。要想成為優(yōu)秀的教師,只有一邊教書一邊總結(jié),一邊教書一邊反思,才能實(shí)現(xiàn)自己的目的。
一、教材分析
本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(六三學(xué)制)七年級(jí)下冊(cè)第七章第三節(jié)多邊形內(nèi)角和。
二、教學(xué)目標(biāo)
1、知識(shí)目標(biāo):了解多邊形內(nèi)角和公式。
2、數(shù)學(xué)思考:通過(guò)把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問(wèn)題的方法。
3、解決問(wèn)題:通過(guò)探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問(wèn)題的方法并能有效地解決問(wèn)題。
4、情感態(tài)度目標(biāo):通過(guò)猜想、推理活動(dòng)感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。
三、教學(xué)重、難點(diǎn)
重點(diǎn):探索多邊形內(nèi)角和。
難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。
四、教學(xué)方法:
引導(dǎo)發(fā)現(xiàn)法、討論法
五、教具、學(xué)具
教具:多媒體課件
學(xué)具:三角板、量角器
六、教學(xué)媒體:
大屏幕、實(shí)物投影
七、教學(xué)過(guò)程:
(一)創(chuàng)設(shè)情境,設(shè)疑激思
師:大家都知道三角形的內(nèi)角和是180,那么四邊形的內(nèi)角和,你知道嗎?
活動(dòng)一:探究四邊形內(nèi)角和。
在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問(wèn)題的方法。
方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來(lái),發(fā)現(xiàn)內(nèi)角和是360。
方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360。
接下來(lái),教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對(duì)角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
活動(dòng)二:探究五邊形、六邊形、十邊形的內(nèi)角和。
學(xué)生先獨(dú)立思考每個(gè)問(wèn)題再分組討論。
關(guān)注:
(1)學(xué)生能否類比四邊形的方式解決問(wèn)題得出正確的結(jié)論。
(2)學(xué)生能否采用不同的方法。
學(xué)生分組討論后進(jìn)行交流(五邊形的內(nèi)角和)
方法1:把五邊形分成三個(gè)三角形,3個(gè)180的和是540。
方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180的和減去一個(gè)周角360。結(jié)果得540。
方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180的和減去一個(gè)平角180,結(jié)果得540。
方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180加上360,結(jié)果得540。
師:你真聰明!做到了學(xué)以致用。
交流后,學(xué)生運(yùn)用幾何畫板演示并驗(yàn)證得到的方法。
得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720,十邊形內(nèi)角和是1440。
(二)引申思考,培養(yǎng)創(chuàng)新
師:通過(guò)前面的討論,你能知道多邊形內(nèi)角和嗎?
活動(dòng)三:探究任意多邊形的內(nèi)角和公式。
思考:
(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?
(2)多邊形的邊數(shù)與內(nèi)角和的關(guān)系?
(3)從多邊形一個(gè)頂點(diǎn)引的對(duì)角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?
學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180的和,五邊形內(nèi)角和是3個(gè)180的和,六邊形內(nèi)角和是4個(gè)180的和,十邊形內(nèi)角和是8個(gè)180的和。發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180。
發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對(duì)角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
得出結(jié)論:多邊形內(nèi)角和公式:(n-2)·180。
(三)實(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)
1、口答:
(1)七邊形內(nèi)角和()
(2)九邊形內(nèi)角和()
(3)十邊形內(nèi)角和()
2、搶答:
(1)一個(gè)多邊形的內(nèi)角和等于1260,它是幾邊形?
(2)一個(gè)多邊形的`內(nèi)角和是1440,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。
3、討論回答:一個(gè)多邊形的內(nèi)角和比四邊形的內(nèi)角和多540,并且這個(gè)多邊形的各個(gè)內(nèi)角都相等,這個(gè)多邊形每個(gè)內(nèi)角等于多少度?
(四)概括存儲(chǔ)
學(xué)生自己歸納總結(jié):
1、多邊形內(nèi)角和公式
2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問(wèn)題
3、用數(shù)形結(jié)合的思想解決問(wèn)題
(五)作業(yè):練習(xí)冊(cè)第93頁(yè)1、2、3
八、教學(xué)反思:
1、教的轉(zhuǎn)變
本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測(cè)量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺(jué)探究數(shù)學(xué)問(wèn)題,體驗(yàn)發(fā)現(xiàn)的樂(lè)趣。
2、學(xué)的轉(zhuǎn)變
學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué)。本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉(zhuǎn)變
整節(jié)課以“流暢、開放、合作、隱導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維減少干預(yù),教學(xué)過(guò)程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對(duì)話”、“討論”為出發(fā)點(diǎn),以互助合作為手段,以解決問(wèn)題為目的,讓學(xué)生在一個(gè)比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值。
感謝您閱讀“幼兒教師教育網(wǎng)”的《初中數(shù)學(xué)教案優(yōu)秀教案大全及反思(匯集八篇)》一文,希望能解決您找不到幼兒園教案時(shí)遇到的問(wèn)題和疑惑,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了數(shù)學(xué)教案反思專題,希望您能喜歡!
相關(guān)推薦
教案可以讓小朋友更好的吸收課堂上所講的知識(shí)點(diǎn),想要成為一名愛(ài)崗敬業(yè)的中班老師,我們要做好關(guān)于教案課件的前期設(shè)計(jì),這樣才不致于在實(shí)際教學(xué)中出現(xiàn)準(zhǔn)備不足的情況,更好的幫助孩子們對(duì)學(xué)習(xí)內(nèi)容的理解吸收。如何才能將中班教案寫的清晰而有條理呢?由此,幼兒教師教育網(wǎng)的編輯為你收集并整理了中班優(yōu)秀教案及反思僅供參考...
設(shè)計(jì)意圖: 基礎(chǔ)階段的數(shù)學(xué)教育要求幼兒能解決問(wèn)題,通過(guò)參與實(shí)踐活動(dòng),在利用和運(yùn)用數(shù)學(xué)方面的能力得到發(fā)展。數(shù)數(shù)是日常生活中常用的技能,而對(duì)于有一定數(shù)概念的大班孩子有必要探索、學(xué)習(xí)群數(shù)的方法,選擇自己喜歡...
身為一名到崗不久的人民教師,我們都希望有一流的課堂教學(xué)能力,借助教學(xué)反思我們可以快速提升自己的教學(xué)能力,怎樣寫教學(xué)反思才更能起到其作用呢?以下是小編收集整理的初中數(shù)學(xué)教學(xué)反思,僅供參考,歡迎大家閱讀。初中數(shù)學(xué)教學(xué)案例及反思 篇1在《直線和圓的位置關(guān)系》這節(jié)課中,我首先由生活中的情景——日落引...
活動(dòng)目標(biāo): 1、引導(dǎo)幼兒了解計(jì)數(shù)有不同方法。 2、能夠以2、5、10為單位進(jìn)行數(shù)群計(jì)數(shù)。 3、通過(guò)計(jì)數(shù),體驗(yàn)操作的樂(lè)趣。 4、通過(guò)各種感官訓(xùn)練培養(yǎng)幼兒對(duì)計(jì)算的興致及思維的準(zhǔn)確性、敏捷性。 5、提高數(shù)數(shù)...
活動(dòng)目標(biāo): 1、認(rèn)識(shí)數(shù)字5.并理解5以內(nèi)各數(shù)的實(shí)際意義。 2、能按數(shù)取物,按物取數(shù)。 3、懂得朋友之間要互相關(guān)心。 活動(dòng)準(zhǔn)備: 1、《數(shù)數(shù)是多少》游戲卡中的數(shù)字卡1-5。 2、《送水果》游戲卡。 3、...
最新更新
熱門欄目