圓錐體積課件。
俗話說,磨刀不誤砍柴工。當(dāng)一次工作學(xué)習(xí)即將開始時(shí),我們通常會(huì)提前查閱一些資料。資料可以指生產(chǎn)、生活中必需的東西。如:生產(chǎn)資料;生活資料。有了資料才能更好的在接下來的工作輕裝上陣!那么,想必你在找可以用得到的幼師資料吧?由此,有請(qǐng)你讀一下以下的“圓錐的體積課件9篇”,歡迎收藏本網(wǎng)站,繼續(xù)關(guān)注我們的更新!
新課程把教學(xué)過程看成是師生交往、積極互動(dòng)、共同發(fā)展的過程。根據(jù)新課程理念和
(一)創(chuàng)設(shè)情境,引發(fā)問題
出示長方體、正方體、圓柱體、圓錐體,問:
1、我們學(xué)過了哪些物體體積的計(jì)算方法?它們的計(jì)算公式各是什么?
2、圓柱的體積計(jì)算方法是怎樣推導(dǎo)出來的?這節(jié)課我們就來學(xué)習(xí)圓錐的體積。(板書:圓錐的體積)
3、你認(rèn)為哪一種物體體積的計(jì)算方法與圓錐有關(guān)?為什么?
4、猜測(cè)一下圓柱體積與圓錐體積有什么關(guān)系?(板書:v圓柱=3v圓錐?猜測(cè))
(本環(huán)節(jié)通過創(chuàng)設(shè)圓錐體積與誰的體積關(guān)系更密切的情景,自然而然導(dǎo)入新課,吸引了學(xué)生的注意力,激發(fā)學(xué)生探索知識(shí)的積極性,為新課的學(xué)習(xí)做了良好的鋪墊。)
5、怎樣驗(yàn)證自己的猜測(cè)?(板書:驗(yàn)證)
(二)合作探索,解決問題
探索是數(shù)學(xué)的生命線,倡導(dǎo)探索性學(xué)習(xí),引導(dǎo)學(xué)生經(jīng)歷知識(shí)的形成過程,是當(dāng)前小學(xué)數(shù)學(xué)改革的理念。理解圓錐體積計(jì)算公式是本節(jié)課的重點(diǎn),我設(shè)計(jì)了以下幾個(gè)環(huán)節(jié),讓學(xué)生通過小組合作,自主探究、動(dòng)手操作來發(fā)現(xiàn)圓錐的體積。
1、出示實(shí)驗(yàn)記錄單
實(shí)驗(yàn)次數(shù)
選擇一個(gè)圓柱和圓錐比較,我們發(fā)現(xiàn)
實(shí)驗(yàn)結(jié)果:它們體積之間的關(guān)系
第一次
第二次
第三次
2、師引導(dǎo)學(xué)生看懂實(shí)驗(yàn)單,按照實(shí)驗(yàn)記錄單做實(shí)驗(yàn),師巡視指導(dǎo)。
3、讓學(xué)生介紹實(shí)驗(yàn)過程和實(shí)驗(yàn)結(jié)果。(去掉?)
4、問:做了3次實(shí)驗(yàn),結(jié)果為什么不一樣?
5、等底等高的圓柱體積和圓錐體積有什么關(guān)系?(板書:v圓錐=v圓柱=sh)
6、在這個(gè)公式中,s、h分別代表什么?Sh得到什么?為什么要乘?
7、求圓錐的體積要知道什么條件?
師小結(jié):通過猜測(cè)、實(shí)驗(yàn)驗(yàn)證得出v圓錐=sh
(這樣設(shè)計(jì),讓學(xué)生親身經(jīng)歷知識(shí)的形成過程,在與同伴的交流、比較中不斷完善優(yōu)化自己的知識(shí)結(jié)構(gòu),通過自主探究、合作交流,突出重點(diǎn),突破難點(diǎn)。)
(三)遷移應(yīng)用,分層提高
練習(xí)是掌握知識(shí)、形成技能、發(fā)展智力的重要環(huán)節(jié),根據(jù)學(xué)生的年齡特點(diǎn)和認(rèn)知規(guī)律,由易到難,由淺入深,力求體現(xiàn)知識(shí)的縱橫聯(lián)系,我設(shè)計(jì)以下幾組練習(xí)題,請(qǐng)看:
1、嘗試解答
出示3組數(shù)據(jù),讓學(xué)生任選一組進(jìn)行解答。
底面半徑4厘米,高6厘米
底面直徑4厘米,高5厘米
底面周長25。12厘米,高4厘米
解答完后,叫一名同學(xué)板書。
問:為什么都選底面半徑和高?
小結(jié):求圓錐的體積,先求出圓錐的底面積,再根據(jù)公式求出圓錐的體積。
2、例1:(課件出示教材情景圖)在打谷場(chǎng)上,有一個(gè)近似于圓錐的小麥堆,底面半徑是2米,高是1。5米。你能計(jì)算出小麥堆的體積嗎?
(生獨(dú)立列式計(jì)算全班交流)
3、判斷
(1)圓錐體積等于圓柱體積的。
(2)圓柱體積大于與它等底等高的圓錐體積。
(3)圓錐的高是圓柱的3倍,圓錐體積等于圓柱體積。
4、填空
(1)一個(gè)圓柱的體積是6立方米,與它等底等高的圓錐體積是()。
(2)一個(gè)圓柱和一個(gè)圓錐,底面半徑和高都相等,圓錐的體積是18立方米,圓柱的體積是()。
(這個(gè)環(huán)節(jié)的設(shè)計(jì),第1、2兩題主要是突出本節(jié)課的重點(diǎn),能運(yùn)用體積公式計(jì)算圓錐的體積以及解決一些實(shí)際問題;第3、4兩題是突破本節(jié)課的難點(diǎn),理解圓柱體積、圓錐體積在等底等高的條件下,體積之間的倍數(shù)關(guān)系。這些習(xí)題的設(shè)計(jì),起到鞏固提高的作用。體現(xiàn)數(shù)學(xué)來源于生活,運(yùn)用于生活。)
(四)總結(jié)評(píng)價(jià),激勵(lì)發(fā)展
課堂總結(jié)是對(duì)本節(jié)課所學(xué)知識(shí)進(jìn)行歸納和總結(jié),以及對(duì)學(xué)生學(xué)習(xí)情況的評(píng)價(jià),因此我設(shè)計(jì)了以下幾個(gè)問題:
1、上了這些課,你有什么收獲和體會(huì)?
2、你還有什么新的想法?還有什么問題?
(這樣不僅能夠幫助學(xué)生鞏固新學(xué)的知識(shí),完善知識(shí)結(jié)構(gòu),提高整理知識(shí)的能力,還能使學(xué)生體驗(yàn)到探索成功的的樂趣,樹立學(xué)好數(shù)學(xué)的信心)YJS21.cOm
教學(xué)內(nèi)容:
九年義務(wù)教育六年制小學(xué)數(shù)學(xué)第十二冊(cè)P32頁。
教學(xué)目標(biāo):
1、通過練習(xí),使學(xué)生進(jìn)一步理解和掌握?qǐng)A錐體積公式,能運(yùn)用公式正確迅速地計(jì)算圓錐的體積。
2、通過練習(xí),使學(xué)生進(jìn)一步深刻理解圓柱和圓錐體積之間的關(guān)系。
3、進(jìn)一步培養(yǎng)學(xué)生將所學(xué)知識(shí)運(yùn)用和服務(wù)于生活的能力。
教學(xué)重點(diǎn):
靈活運(yùn)用圓柱圓錐的有關(guān)知識(shí)解決實(shí)際問題。
教學(xué)難點(diǎn):
同教學(xué)難點(diǎn)。
設(shè)計(jì)理念:
練習(xí)的過程是學(xué)生將所學(xué)知識(shí)內(nèi)化、升華的過程,練習(xí)過程中既有基礎(chǔ)知識(shí)的合理鋪墊,又有不同程度的提高,練習(xí)的內(nèi)容有明顯的階梯性。力求使不同層次的學(xué)生都學(xué)有收獲。
教學(xué)步驟、教師活動(dòng)、學(xué)生活動(dòng)
一、復(fù)習(xí)鋪墊、內(nèi)化知識(shí)。1. 圓錐體的體積公式是什么?我們是如何推導(dǎo)的?
2.圓柱和圓錐體積相互關(guān)系填空,加深對(duì)圓柱和圓錐相互關(guān)系的理解。
(1)一個(gè)圓柱體積是18立方厘米,與它等底等高的圓錐的體積是()立方厘米。
(2)一個(gè)圓錐的體積是18立方厘米,與它等底等高的圓柱的體積是()立方厘米。
(3)一個(gè)圓柱與和它等底等高的圓錐的體積和是144立方厘米。圓柱的體積是()立方厘米,圓錐的體積是()立方厘米。
3.求下列圓錐體的體積。
(1)底面半徑4厘米,高6厘米。
(2)底面直徑6分米,高8厘米。
(3)底面周長31.4厘米.高12厘米。
4、教師根據(jù)學(xué)生練習(xí)中存在的問題,集體評(píng)講。同座位的同學(xué)先說一說圓錐體積公式的推導(dǎo)過程。
學(xué)生獨(dú)立練習(xí),互相批改,指出問題。
學(xué)生交流一下這幾題在解題時(shí)要注意什么?
二、豐富拓展、延伸練習(xí)。1.拓展練習(xí):
(1)把一個(gè)圓柱體木料削成一個(gè)最大的圓錐體木料,圓錐的體積占圓柱體的幾分之幾?削去的部分占圓柱體的幾分之幾?
(2)一個(gè)圓柱體比它等底等高的圓錐體積大48立方厘米,圓柱體和圓錐體的體積各是多少?
2.完成31頁第5題。討論下列問題:
(1)圓柱和圓錐體積相等、底面積也相等,圓柱的高和圓錐的高有什么關(guān)系?
(2)圓柱和圓錐體積相等、高也相等,圓柱的底面積和圓錐的底面積有什么關(guān)系?
3.分組討論:圓柱的底面半徑是圓錐的2倍,圓錐的高是圓柱的高的2倍,圓柱和圓錐的體積之間有什么倍數(shù)關(guān)系?
學(xué)生分組討論,教師參與其中,以有疑問的方式參與討論。
三、充分提高,全面升華。
1.展示一個(gè)圓錐形的沙堆,小組討論一下用什么方法可以測(cè)量出它的體積。
2.教師給每一組一小袋米。讓學(xué)生在桌子上堆成一個(gè)近似的圓錐體,通過合作測(cè)量的形式求出它的體積。
3.討論練習(xí)八蒙古包所占空間的大小的方法。
(1)蒙古包是由哪幾個(gè)部分組成的?
(2)上部的圓錐和下部的圓柱有哪些相同的地方,有哪些不同的地方?
(3)同學(xué)們能獨(dú)立地求出蒙古包所占的空間的大小嗎?請(qǐng)?jiān)囈辉嚒?/p>
4.交流一下本節(jié)課的收獲。
學(xué)生分組討論后動(dòng)手實(shí)踐并計(jì)算。
學(xué)生先交流。
四、全課總結(jié),內(nèi)化知識(shí)。
1.提問:
(1)同學(xué)們掌握了圓錐體的哪些知識(shí)?
(2)你用圓錐體的體積的有關(guān)知識(shí)解決現(xiàn)實(shí)生活中的哪些問題?
2.學(xué)有余力的同學(xué)思考38頁思考題。
3.作業(yè):練習(xí)八6、7、8
學(xué)生獨(dú)立練習(xí)
微課作品介紹
本作品是針對(duì)蘇教版數(shù)學(xué)教材六年級(jí)下冊(cè)第二單元《圓柱和圓錐》中的“圓錐的體積”這一知識(shí)點(diǎn)而設(shè)計(jì)的微課。適用于義務(wù)教育六年級(jí)即將學(xué)習(xí)“圓錐的體積”或者已經(jīng)學(xué)過但仍需鞏固的學(xué)生。
本節(jié)內(nèi)容是在學(xué)生了解圓錐的特征、掌握了圓柱體積的計(jì)算方法基礎(chǔ)上進(jìn)行教學(xué)的,有些學(xué)生可能通過預(yù)習(xí)等途徑已經(jīng)知道了圓錐的體積公式,但公式是熟知的,原理是抽象的。圓錐的體積公式是如何推導(dǎo)而來的?怎樣透過公式了解原理?對(duì)學(xué)生來說有一定的難度,所以針對(duì)這個(gè)學(xué)習(xí)內(nèi)容制作了本節(jié)微課。
通過本節(jié)微課的學(xué)習(xí),學(xué)生能突破“圓錐的體積是怎么推導(dǎo)得出的”這一難點(diǎn),能用科學(xué)的方法來解釋體積公式的由來,進(jìn)而更好地理解、掌握、運(yùn)用圓錐體積公式,為今后學(xué)習(xí)立體幾何相關(guān)知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。
教學(xué)需求分析
適用對(duì)象分析
本節(jié)微課適用于即將學(xué)習(xí)“圓錐的體積”或者已經(jīng)學(xué)過但仍需鞏固的學(xué)生。本節(jié)內(nèi)容是在學(xué)生了解圓錐的特征、掌握了圓柱體積的計(jì)算方法基礎(chǔ)上進(jìn)行教學(xué)的。
高年級(jí)學(xué)生分析問題,解決問題能力逐步增強(qiáng),這為學(xué)生的自主探究及合作學(xué)習(xí)創(chuàng)造了有利條件,他們已經(jīng)掌握了一些幾何知識(shí),了解部分幾何圖形之間的轉(zhuǎn)化方法。但學(xué)生的立體空間觀念還沒得到完全發(fā)展,形體之間的轉(zhuǎn)化還有一定的困難。針對(duì)學(xué)生的實(shí)際,教學(xué)中我主要采用觀察法,猜想、操作等方法,讓學(xué)生切身體驗(yàn)知識(shí)的生成和形成。
學(xué)習(xí)內(nèi)容分析
本節(jié)課是小學(xué)階段幾何知識(shí)的重難點(diǎn)部分,是小學(xué)學(xué)習(xí)立體圖形體積計(jì)算的飛躍,通過這部分知識(shí)的教學(xué),可以發(fā)展學(xué)生的空間觀念、想象能力,較深入地理解幾何體體積推導(dǎo)方法的新領(lǐng)域,為學(xué)生進(jìn)一步學(xué)習(xí)幾何知識(shí)奠定良好的基礎(chǔ)。在教學(xué)中重視類比,轉(zhuǎn)化思想的滲透,直觀引導(dǎo)學(xué)生經(jīng)歷“猜測(cè)、類比、觀察、實(shí)驗(yàn)、探究、推理、總結(jié)”的探索過程,理解并掌握?qǐng)A錐體積的.推導(dǎo)過程和計(jì)算公式。
教學(xué)目標(biāo)分析
1.使學(xué)生在認(rèn)識(shí)等底等高的圓柱和圓錐的基礎(chǔ)上,經(jīng)歷操作、猜想、估計(jì)、驗(yàn)證、討論、歸納等數(shù)學(xué)活動(dòng)過程,推導(dǎo)圓錐的體積公式;掌握?qǐng)A錐體積的計(jì)算公式,能應(yīng)用公式解決相關(guān)的實(shí)際問題。
2.使學(xué)生在活動(dòng)中進(jìn)一步積累空間與圖形的學(xué)習(xí)經(jīng)驗(yàn),增強(qiáng)空間觀念,發(fā)展數(shù)學(xué)思考。
教學(xué)過程設(shè)計(jì)
(一)定向明法。
1,談話:生活中有許多圓錐形的物體。
生:今年我家糧食大豐收,爸爸他們把稻谷堆成一堆一堆的,就是一個(gè)個(gè)大圓錐??墒?,這些圓錐的體積怎么 求???
師:思考一下你能幫助馬小蘭同學(xué)解決這個(gè)問題嗎!?
2,揭示課題。
(二)實(shí)驗(yàn)驗(yàn)證
師:回憶一下:之前我們?cè)趺刺剿鲌A柱體積公式的(把圓柱轉(zhuǎn)化成長方體)
師:思考一下,我們可以怎么探求圓錐的體積?
師:哦,是的或許,我們可以把圓錐的體積轉(zhuǎn)化成圓柱的體積!
1,估計(jì)圓錐和圓柱的體積關(guān)系。
出示圓柱和圓錐的直觀圖
師:請(qǐng)大家估計(jì)一下,圓柱的體積和圓錐的體積有怎樣的關(guān)系呢?
問:這僅僅是我們的估計(jì),可以用什么方法來驗(yàn)證我們的估計(jì)呢?
師:為了驗(yàn)證我們的猜想,我們一起來做個(gè)實(shí)驗(yàn)吧!
2, 明確實(shí)驗(yàn)方法。
(1)實(shí)驗(yàn)思路:在圓錐容器里裝滿沙子,然后倒入空?qǐng)A柱容器,看幾次正好倒?jié)M,就能得出這個(gè)圓錐體積與圓柱體積之間的關(guān)系。
(2)實(shí)驗(yàn)注意點(diǎn):①裝沙子要裝滿,又不能多裝;
②倒的時(shí)候要小心,不能潑灑;
3,匯報(bào)總結(jié)。
(1)比較原來的圓柱和圓錐形容器,有什么特點(diǎn)
(2)結(jié)論:等底等高時(shí),①圓柱的體積是圓錐體積的3倍;
②圓錐的體積是圓柱體積的三分之一。
(3)總結(jié)得出圓錐體積計(jì)算公式:圓錐的體積=× 底面積×高
(三)全課總結(jié)。
師:同學(xué)們,經(jīng)過今天的學(xué)習(xí),你知道圓錐體積公式是怎么推導(dǎo)出來的嗎?以后遇到圓錐形物體,它的體積你會(huì)求了嗎?
(四)課后鞏固。
一堆大米,近似于圓錐形,量得底面面積是18平方分米,高5分米。它的體積是多少立方厘米?
學(xué)習(xí)指導(dǎo)
請(qǐng)?jiān)陬A(yù)習(xí)或復(fù)習(xí)蘇教版數(shù)學(xué)教材六年級(jí)下冊(cè)第二單元《圓柱和圓錐》中的“圓錐的體積”時(shí)使用本視頻,并嘗試在觀看后使用所學(xué)知識(shí)解決實(shí)際問題。另外,相關(guān)資料還有很多,可以去網(wǎng)上搜索更多進(jìn)行鞏固。
配套學(xué)習(xí)資料
蘇教版數(shù)學(xué)教材六年級(jí)下冊(cè)
制作技術(shù)介紹
制作PPT課件,再利用錄屏軟件錄制過程,用攝像機(jī)拍攝實(shí)驗(yàn)過程,最后用非編軟件進(jìn)行整合。
圓錐的體積是在學(xué)生已經(jīng)掌握了圓柱體積計(jì)算及應(yīng)用和認(rèn)識(shí)了圓錐的基本特征的基礎(chǔ)上學(xué)習(xí)的,是小學(xué)階段學(xué)習(xí)幾何知識(shí)的最后一課時(shí)的內(nèi)容。圓錐是人們生產(chǎn)、生活中經(jīng)常遇到的形體。教學(xué)好這部分內(nèi)容,有利于進(jìn)一步發(fā)展學(xué)生的空間觀念,為進(jìn)一步解決一些實(shí)際問題打下基礎(chǔ)。
數(shù)學(xué)課程標(biāo)準(zhǔn)要求:教師是學(xué)生數(shù)學(xué)活動(dòng)的組織者、引導(dǎo)者、合作者。教師要積極利用各種教學(xué)資源,創(chuàng)造性地使用教材,設(shè)計(jì)適合學(xué)生發(fā)展的教學(xué)過程。根據(jù)新課程標(biāo)準(zhǔn)的理念和教材特點(diǎn)以及學(xué)生的實(shí)際,我制定了如下的教學(xué)目標(biāo)及教學(xué)重難點(diǎn)。
1、教學(xué)目標(biāo):
(1)理解圓錐體積公式的推導(dǎo)過程,掌握?qǐng)A錐體積計(jì)算公式,能運(yùn)用體積公式計(jì)算圓錐的體積。
(2)培養(yǎng)學(xué)生的觀察、理解能力、空間觀念,應(yīng)用所學(xué)的知識(shí)解決實(shí)際問題的能力。
(3)使學(xué)生在經(jīng)歷中獲得成功的體驗(yàn),體驗(yàn)數(shù)學(xué)與生活的聯(lián)系。
2、教學(xué)重點(diǎn):掌握?qǐng)A錐體積計(jì)算公式,能運(yùn)用體積公式計(jì)算圓錐的體積以及解決一些實(shí)際問題。
3、教學(xué)難點(diǎn):理解圓柱體積、圓錐體積在等底等高的條件下,體積之間的倍數(shù)關(guān)系。
4、教具準(zhǔn)備:
(1)多媒體課件。
(2)等底等高、等底不等高、等高不等底的圓錐和圓柱若干套,沙、實(shí)驗(yàn)報(bào)告單;帶有刻度的直尺,繩子等。
一,說教材:
1,本課教學(xué)內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)的第二單元《圓柱與圓錐》中《圓錐體積》的第一課時(shí).教學(xué)內(nèi)容為圓錐體積計(jì)算公式的推導(dǎo),例2,例3,相應(yīng)的"做一做"及練習(xí)四的習(xí)題.
2,本課是在學(xué)生已經(jīng)掌握了圓柱體積計(jì)算和認(rèn)識(shí)了圓錐的基本特征的基礎(chǔ)上學(xué)習(xí)的,是小學(xué)階段幾何知識(shí)的最后一課.學(xué)好這一部分內(nèi)容,有利于進(jìn)一步發(fā)展學(xué)生的空間觀念,進(jìn)一步解決一些實(shí)際問題打下基礎(chǔ).教材按照實(shí)驗(yàn),觀察,推導(dǎo),歸納,實(shí)際應(yīng)用的程序進(jìn)行安排.
3,教學(xué)重點(diǎn):能正確運(yùn)用圓錐體積計(jì)算公式求圓錐的體積.
教學(xué)難點(diǎn):理解圓錐體積公式的推導(dǎo)過程.
4,教學(xué)目標(biāo):
知識(shí)目標(biāo):理解并掌握?qǐng)A錐體積公式的推導(dǎo)過程,學(xué)會(huì)運(yùn)用圓錐體積計(jì)算公式求圓錐的體積;
能力目標(biāo):能解決一些有關(guān)圓錐的實(shí)際問題,通過圓錐體積公式的推導(dǎo)實(shí)驗(yàn),增強(qiáng)學(xué)生的實(shí)踐操作能力和觀察比較能力;
情感與價(jià)值觀:通過實(shí)驗(yàn),引導(dǎo)學(xué)生探索知識(shí)的內(nèi)在聯(lián)系,滲透轉(zhuǎn)化思想,培養(yǎng)交流與合作的團(tuán)隊(duì)精神.
5,教具準(zhǔn)備:等底等高的圓柱,圓錐一對(duì),與圓柱等底不等高的圓錐一個(gè),與圓柱等高不等底的圓錐一個(gè).
學(xué)具準(zhǔn)備:讓學(xué)生分組制作等底等高的圓柱,圓錐若干對(duì),一定量的細(xì)沙.
二,說教法:
1,實(shí)驗(yàn)操作法.
波利亞說過:"學(xué)習(xí)任何知識(shí)的最佳途徑是由自己去發(fā)現(xiàn),因?yàn)檫@種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的內(nèi)在規(guī)律,性質(zhì)和聯(lián)系."因此,我在課上設(shè)計(jì)了一個(gè)實(shí)驗(yàn),通過學(xué)生動(dòng)手操作,用空?qǐng)A錐盛滿沙后倒入等底等高空?qǐng)A柱中,發(fā)現(xiàn)"圓錐的體積等于和它等底等高的圓柱體積的三分之一".利用實(shí)驗(yàn)法,為推導(dǎo)出圓錐的體積公式發(fā)揮橋梁和啟智的作用,有助于發(fā)展學(xué)生的空間觀念,培養(yǎng)觀察能力,思維能力和動(dòng)手操作能力.
2,比較法,討論法,發(fā)現(xiàn)法三法優(yōu)化組合.
幾何知識(shí)具有邏輯性,嚴(yán)密性,系統(tǒng)性的特點(diǎn).因此在做實(shí)驗(yàn)時(shí),我要求學(xué)生運(yùn)用比較法,討論法,發(fā)現(xiàn)法得出結(jié)論:"圓錐的體積等于與它等底等高圓柱體積的三分之一".然后再讓學(xué)生討論假如這句話中去掉"等底等高"這幾個(gè)字還能否成立,并讓學(xué)生用不等底等高的空?qǐng)A錐,空?qǐng)A柱盛沙做實(shí)驗(yàn),發(fā)現(xiàn)有時(shí)裝不下,有時(shí)不夠裝,有時(shí)剛好裝滿,得出結(jié)論:不是所有的圓錐體積都是圓柱體積的三分之一,從而加深了"等底等高"這個(gè)重要的前提條件.
三,說學(xué)法
我在研究教法的同時(shí),更重視對(duì)學(xué)生學(xué)法的指導(dǎo).
1,實(shí)驗(yàn)操作法.
2,嘗試練習(xí)法.
一、教學(xué)內(nèi)容:
六年制小學(xué)數(shù)學(xué)教材第十二冊(cè)第25-26頁
二、教學(xué)目標(biāo):
1、知識(shí)技能目標(biāo):
◆使學(xué)生探索并初步掌握?qǐng)A錐體積的計(jì)算方法和推導(dǎo)過程;
◆使學(xué)生會(huì)應(yīng)用公式計(jì)算圓錐的體積并解決一些實(shí)際問題。
2、思維能力目標(biāo):
◆提高學(xué)生實(shí)踐操作、觀察比較、抽象概括及邏輯推斷的能力,發(fā)展空間觀念。
3、情感態(tài)度目標(biāo):
◆培養(yǎng)學(xué)生的合作意識(shí)和探究意識(shí);
◆使學(xué)生獲得成功的體驗(yàn),體驗(yàn)數(shù)學(xué)與生活的聯(lián)系。
三、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):使學(xué)生初步掌握?qǐng)A錐體積的計(jì)算方法并解決一些實(shí)際問題
難點(diǎn):探索圓錐體積方法和推導(dǎo)過程。
教學(xué)過程:
一、質(zhì)疑引入
1 圓錐有什么特征?指名學(xué)生回答。
2 說一說圓柱體積的計(jì)算公式。
(1)已知 s、h 求 v
(2)已知 r、h 求 v
(3)已知 d、h 求 v
3 我們已經(jīng)認(rèn)識(shí)了圓錐又學(xué)過圓柱體積的計(jì)算公式,那么圓錐的體積又該如何計(jì)算呢?今天我們就來學(xué)習(xí)圓錐體積的計(jì)算。
板書課題:圓錐的體積
二、新課
(一) 教學(xué)圓錐體積的計(jì)算公式
1、師:請(qǐng)大家回憶一下,我們是怎樣得到圓柱體積的計(jì)算公式的?
指名學(xué)生敘述圓柱體積的計(jì)算公式的推導(dǎo)過程:(學(xué)生:圓柱---轉(zhuǎn)化長方體- 長方體的體積公式----推導(dǎo)圓柱體公式)
2、 教師:那么圓錐的體積該怎樣求呢?能不能也通過學(xué)過的圖形來求呢?
先讓學(xué)生討論,然后指出:我們可以通過實(shí)驗(yàn)的方法,得到計(jì)算圓錐體積的公式
〈1〉學(xué)生獨(dú)立操作
讓兩名學(xué)生到講臺(tái)上做實(shí)驗(yàn)其他學(xué)生觀察,拿出等底等高的圓柱和圓錐各1個(gè),比圓柱體積多的水。先在圓錐里裝滿水,然后倒入圓柱??磶状握冒褕A柱裝滿?
〈2〉教師教具演示鞏固學(xué)生的操作效果,cai課件演示
a 屏幕上出示等底、等高
b 等底、不等高
c 等高、不等底
實(shí)驗(yàn)報(bào)告單
實(shí)驗(yàn)器材
實(shí)驗(yàn)結(jié)果
等底不等高的圓錐、圓柱
等高不等底的圓錐、圓柱
等底等高的圓錐、圓柱
〈3〉引導(dǎo)學(xué)生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積等于和它等底等高圓柱體積的 1/3 (板書 )
用字母表示圓錐的體積公式.v錐=1/3sh
做一做:
填空:
等底等高的圓錐和圓柱,圓柱的體積是圓錐的體積的( ),圓錐的體積是圓柱的體積的( )已知圓錐的體積是9立方分米,圓柱的體積是( );如果圓柱的體積是12立方分米,那么圓錐的體積是( )。
(二)運(yùn)用公式,嘗試練習(xí)
1、要求圓錐的體積,必須知道哪兩個(gè)條件?為什么要乘 1/3 ?
試一試:
一個(gè)圓錐體,底面積是19平方米, 高是12分米。這個(gè)圓錐的體積是多少?《圓錐的體積》教學(xué)設(shè)計(jì) 相關(guān)內(nèi)容:第四單元 圓 全單元教案六下第一單元 負(fù)數(shù) 教材分析《圓錐的認(rèn)識(shí)》說課《分?jǐn)?shù)乘分?jǐn)?shù)》教后反思《納稅》教案 人教版第十一冊(cè)教案百分?jǐn)?shù)(五)折 扣圓柱的'表面積第三單元分?jǐn)?shù)除法:分?jǐn)?shù)除法的意義和整數(shù)除以分?jǐn)?shù)查看更多>> 小學(xué)六年級(jí)數(shù)學(xué)教案
2、思考:求圓錐的體積,還可能出現(xiàn)那些情況?
(如果已知圓錐的高和底面半徑如果已知圓錐的高和底面半徑(或直徑、周長),怎樣求圓錐的體積呢?)
練一練
3、求下面的體積。(只列式不計(jì)算)
(1)底面半徑是2 厘米,高3厘米。
3.14×22×3
(2)底面直徑是6分米,高6分米 。
3.14×(6 ÷2)2 ×6
(3)底面周長是12.56厘米,高是6厘米
3.14×(12.56 ÷6.28)2 ×6
2、求下面各圓錐的體積如圖(單位厘米)
(1)底面直徑是8分米,高9分米 (2)底面半徑3分米和高7分米
通過公式我們發(fā)現(xiàn)計(jì)算圓錐的體積所必須的條件可以是底面積和高
a、底面積和高
b、底面半徑和高
c、底面直徑和高
d、底面周長和高
三、鞏固練習(xí)
1、判斷:
⑴、圓錐的體積等于圓住體積的1/3。( )
⑵把一個(gè)圓柱切成一個(gè)圓錐,這個(gè)圓錐的體積是圓柱體積的1/3 ( )
⑶圓柱的體積比和它等底等高圓錐的體積大2倍。( )
⑶一個(gè)圓柱與一個(gè)圓錐的底面積和體積相等,那么圓錐的高是圓柱高的
2、填空
⑴一個(gè)圓錐與一個(gè)圓柱等底等高,已知圓錐的體積是 18 立方米,圓柱的體積是( )。
⑵一個(gè)圓錐與一個(gè)圓柱等底等體積,已知圓柱的高是 12 厘米, 圓錐的高是( )。
⑶一個(gè)圓錐與一個(gè)圓柱等高等體積,已知圓柱的底面積是 314 平方米,圓錐的底面積是( )。
3、拓展練習(xí)
工地上有一些沙子,堆起來近似于一個(gè)圓錐,通過測(cè)量它的直徑是4厘米高是1.2厘米,這堆沙子大約多少立方米?(得數(shù)保留兩位小數(shù))
(引導(dǎo)學(xué)生說出怎樣測(cè)量沙堆的底面的周長、直徑、和高。)
用兩根竹竿平行地放在沙堆兩側(cè),測(cè)得兩根竹竿間的距離,就是直徑。將一根竹竿過沙堆的頂部水平位置,另一根竹竿豎直與水平竹竿成直角即可量得高。
教學(xué)目標(biāo):
1、通過動(dòng)手操作實(shí)驗(yàn),推導(dǎo)出圓錐體體積的計(jì)算公式。
2、理解并掌握體積公式,能運(yùn)用公式求圓錐的體積,并會(huì)解決簡(jiǎn)單的實(shí)際問題。
3、通過學(xué)生動(dòng)腦、動(dòng)手,培養(yǎng)學(xué)生的觀察、分析的綜合能力。
教具準(zhǔn)備:等底等高的圓柱體和圓錐體5套,大小不同的圓柱體和圓錐體5套、水槽5個(gè),以及多媒體輔助教學(xué)課件。
教學(xué)過程設(shè)計(jì):
一、復(fù)習(xí)舊知,做好鋪墊。
1、認(rèn)識(shí)圓柱(課件演示),并說出怎樣計(jì)算圓柱的體積?(屏幕出示:圓柱體的體積=底面積×高)
2、口算下列圓柱的體積。
(1)底面積是5平方厘米,高 6 厘米,體積 = ?
(2)底面半徑是 2 分米,高10分米,體積 = ?
(3)底面直徑是 6 分米,高10分米,體積 = ?
3、認(rèn)識(shí)圓錐(課件演示),并說出有什么特征?
二、溝通知識(shí)、探索新知。
教師導(dǎo)入:同學(xué)們,我們已經(jīng)認(rèn)識(shí)了圓錐,掌握了它的特征,但是,對(duì)于圓錐的學(xué)習(xí)我們不能只停留在認(rèn)識(shí)上,有關(guān)圓錐的知識(shí)還有很多有待于我們?nèi)W(xué)習(xí)、去探究。這節(jié)課我們就來研究“圓錐的體積”。(板書課題)
1、探討圓錐的體積計(jì)算公式。
教師:怎樣推導(dǎo)圓錐的體積計(jì)算公式呢?在回答這個(gè)問題之前,請(qǐng)同學(xué)們先想一想,我們是怎樣知道圓柱體積計(jì)算公式的?
學(xué)生回答,教師板書:
圓柱------(轉(zhuǎn)化)------長方體
圓柱體積計(jì)算公式--------(推導(dǎo))長方體體積計(jì)算公式
教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個(gè)組都準(zhǔn)備了一個(gè)圓柱體和一個(gè)圓錐體。你們小組比比看,這兩個(gè)形體有什么相同的地方?學(xué)生操作比較后,再用課件演示。
(1)提問學(xué)生:你發(fā)現(xiàn)到什么?(圓柱和圓錐的底和高有什么關(guān)系?)
(學(xué)生得出:底面積相等,高也相等。)
教師:底面積相等,高也相等,用數(shù)學(xué)語言說就叫“等底等高”。
(板書:等底等高)
(2)為什么?既然這兩個(gè)形體是等底等高的,那么我們就跟求圓柱體體積一樣,就用“底面積×高”來求圓錐體體積行不行?
(不行,因?yàn)閳A錐體的體積小)
教師:(把圓錐體套在透明的圓柱體里)是啊,圓錐體的體積小,那你估計(jì)一下這兩個(gè)形體的體積大小有什么樣的倍數(shù)關(guān)系?(指名發(fā)言)
用水和圓柱體、圓錐體做實(shí)驗(yàn)。怎樣做這個(gè)實(shí)驗(yàn)由小組同學(xué)自己商量,但最后要向同學(xué)們匯報(bào),你們組做實(shí)驗(yàn)的圓柱體和圓錐體在體積大小上有什么樣的倍數(shù)關(guān)系。
(3)學(xué)生分組做實(shí)驗(yàn),并借助課件演示。
(教師深入小組中了解活動(dòng)情況,對(duì)個(gè)別小組予以適當(dāng)?shù)膸椭?
a、誰來匯報(bào)一下,你們組是怎樣做實(shí)驗(yàn)的?
b、你們做實(shí)驗(yàn)的圓柱體和圓錐體在體積大小上發(fā)現(xiàn)有什么倍數(shù)關(guān)系?
(學(xué)生發(fā)言:圓柱體的體積是圓錐體體積的3倍)
教師:同學(xué)們得出這個(gè)結(jié)論非常重要,其他組也是這樣的嗎?
學(xué)生回答后,教師用教學(xué)課件演示實(shí)驗(yàn)的全過程,并啟發(fā)學(xué)生在小組內(nèi)有條理地表述圓錐體體積計(jì)算公式的推導(dǎo)過程。
(板書圓錐體體積計(jì)算公式)
教師:我們學(xué)過用字母表示數(shù),誰來把這個(gè)公式用字母表示一下?(指名發(fā)言,板書)
(4)學(xué)生操作:出示另外一組大小不同的圓柱體和圓錐體進(jìn)行體積大小的比較,通過比較你發(fā)現(xiàn)什么?
學(xué)生回答后,教師整理歸納:不是任何一個(gè)圓錐體的體積都是任何一個(gè)圓柱體體積的 。(教師拿起一個(gè)小圓錐、一個(gè)大圓柱)如果老師在這個(gè)大圓錐體里裝滿了水,往這個(gè)小圓柱體里倒,需要倒三次才能倒?jié)M嗎?(不需要)
為什么你們做實(shí)驗(yàn)的圓錐體里裝滿了水往圓柱體里倒,要倒三次才能倒?jié)M呢?(因?yàn)槭堑鹊椎雀叩膱A柱體和圓錐體。)
(教師給體積公式與“等底等高”四個(gè)字上連線。)
進(jìn)一步完善體積計(jì)算公式:
圓錐的體積=等底等高的圓柱體體積×1/3
=底面積 × 高×1/3
V = 1/3Sh
教師:現(xiàn)在我們得到的這個(gè)結(jié)論就更完整了。(指名反復(fù)敘述公式。)
課件出示:
想一想,討論一下:?
(1)通過剛才的實(shí)驗(yàn),你發(fā)現(xiàn)了什么?
(2)要求圓錐的體積必須知道什么?
學(xué)生后討論回答。
三、 應(yīng)用求體積、解決問題。
1、口答。
(1)有一個(gè)圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?
(2)有一個(gè)圓錐的體積是9立方分米,與它等底等高的圓柱體積是多少?
2、出示例題,學(xué)生讀題,理解題意,自己解決問題。
例1、一個(gè)圓錐形的零件,底面積是19平方厘米,高是12厘米,這個(gè)零件的體積是多少?
a、 學(xué)生完成后,進(jìn)行小組交流。
b 、 你是怎樣想的和怎樣解決問題的。(提問學(xué)生多人)
c 、 教師板書:
1/3×19×12=76(立方厘米)
答:它的體積是76立方厘米
3 、練習(xí)題。
一個(gè)圓錐體,半徑為6cm,高為18cm。體積是多少?(學(xué)生在黑板上只列式,反饋。)
我們已經(jīng)學(xué)會(huì)了求圓錐體的體積,現(xiàn)在我們來解決有關(guān)圓錐體體積的問題。
4、出示例2:要求學(xué)生自己讀題,理解題意。
在打谷場(chǎng)上,有一個(gè)近似于圓錐形的小麥堆,測(cè)得底面直徑是4米,高是1.2米,每立方米小麥約重735千克,這堆小麥約有多少千克?(得數(shù)保留整千克)
(1)提問:從題目中你知道了什么?
(2)學(xué)生獨(dú)立完成后教師提問,并回答學(xué)生的質(zhì)疑:
3.14×(4÷2)2×1.2× 1/3 表示什么?為什么要先求圓錐的體積?得數(shù)保留整千克數(shù)是什么意思?….
5、比較:例1和例2有什么不同的地方?
(1)例1直接告訴了我們底面積,而例2沒有直接告訴,要求我們先求出底面積,再求出圓錐體積;(2)例1 是直接求體積,例2是求出體積后再求重量。
教學(xué)目標(biāo):
1、使學(xué)生理解圓錐體積計(jì)算的推導(dǎo)過程,初步掌握?qǐng)A錐體積的計(jì)算公式,并能運(yùn)用公式正確地計(jì)算。
2、培養(yǎng)學(xué)生初步的空間觀念、邏輯思維能力、動(dòng)手操作能力、創(chuàng)新能力。
3、滲透知識(shí)“相互轉(zhuǎn)化”的辨證唯物主義思想和猜想、驗(yàn)證等數(shù)學(xué)思想方法。
教學(xué)重點(diǎn):
掌握?qǐng)A錐體積計(jì)算的方法并運(yùn)用圓錐的體積計(jì)算方法解決實(shí)際問題。
教學(xué)難點(diǎn):
理解圓錐體積公式的推導(dǎo)過程,滲透猜想、驗(yàn)證等數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的實(shí)踐能力。
教具準(zhǔn)備:
一對(duì)等底等高的空心圓柱、圓錐和一桶水為一份教具,準(zhǔn)備6份。一桶沙子。
教學(xué)過程:
( 一)復(fù)習(xí)舊知,課前鋪墊
1。怎樣計(jì)算圓柱的體積?
指名回答,教師板書:圓柱體的體積=底面積×高。
2。一個(gè)圓柱的底面積是60平方分米,高15分米,它的體積是多少立方分米?
指兩名板演,全班齊練,集體訂正。
(二)提出質(zhì)疑,引入新課
圓錐有什么特征? 它的體積如何計(jì)算呢?
今天我們就利用這些知識(shí)探討新的——怎樣計(jì)算圓錐的體積(板書課題)
(三)動(dòng)手操作 ,獲得新知
1。 探討圓錐的體積公式
教師:怎樣探討圓錐的體積計(jì)算公式呢?在回答這個(gè)問題之前,請(qǐng)同學(xué)們先想一想,我們是怎樣知道圓柱體積公式的:
學(xué)生回答,教師板書:
圓柱——(轉(zhuǎn)化)——長方體
圓柱體積公式——(推導(dǎo))——長方體體積公式
教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個(gè)組都準(zhǔn)備了一個(gè)圓柱體和一個(gè)圓錐體。你們小組比比看,這兩個(gè)形體有什么相同的地方?學(xué)生操作比較。
(1)提問學(xué)生:你發(fā)現(xiàn)到什么?(這個(gè)圓柱體和這個(gè)圓錐體的形狀有什么關(guān)系)
(學(xué)生得出:底面積相等,高也相等。)
底面積相等,高也相等,用數(shù)學(xué)語言說就叫“等底等高”。
(板書:等底 等高)
(2)為什么?既然這兩個(gè)形體是等底等高的,那么我們就跟求圓柱體體積一樣,就用“底面積×高”來求圓錐體體積行不行?為什么?
教師:圓錐體的體積小,那你估計(jì)一下這兩個(gè)形體的體積大小有什么樣的關(guān)系?(指名發(fā)言)
用水和圓柱體、圓錐體做實(shí)驗(yàn)。怎樣做這個(gè)實(shí)驗(yàn)由小組同學(xué)自己商量,但最后要向同學(xué)們匯報(bào),你們組做實(shí)驗(yàn)的圓柱體和圓錐體在體積大小上有什么樣的倍數(shù)關(guān)系。
(3) 學(xué)生分組做實(shí)驗(yàn)。
誰來匯報(bào)一下,你們組是怎樣做實(shí)驗(yàn)的?
你們做實(shí)驗(yàn)的圓柱體和圓錐體在體積大小上發(fā)現(xiàn)有什么倍數(shù)關(guān)系?(學(xué)生發(fā)言:圓柱體的體積是圓錐體體積的3倍)
同學(xué)們得出這個(gè)結(jié)論非常重要,其他組也是這樣的嗎?
我們學(xué)過用字母表示數(shù),誰來把這個(gè)公式整理一下?(指名發(fā)言)
(4)學(xué)生操作:出示另外一組大小不同的圓柱體和圓錐體進(jìn)行體積大小的比較,通過比較你發(fā)現(xiàn)什么?
學(xué)生回答后,教師整理歸納:不是任何一個(gè)圓錐體的體積都是任何一個(gè)圓柱體體積的三分之一。 (老師拿起一個(gè)小圓錐、一個(gè)大圓柱)如果老師把這個(gè)大圓錐體里裝滿了沙子,往這個(gè)小圓柱體里倒,倒三次能倒?jié)M嗎?(不能)
為什么你們做實(shí)驗(yàn)的圓錐體里裝滿了水往圓柱體里倒,倒三次能倒?jié)M呢?(因?yàn)槭堑鹊椎雀叩膱A柱體和圓錐體。)
在等底等高的情況下。
(老師在體積公式與“等底等高”四個(gè)字上連線。)
現(xiàn)在我們得到的這個(gè)結(jié)論就更完整了。(指名反復(fù)敘述公式。)
教師:同學(xué)們圓錐體里裝滿了水往圓柱體里倒,只倒一次,看看能不能想辦法推出計(jì)算公式?讓學(xué)生動(dòng)腦動(dòng)手?
得出用尺子量圓錐里的水倒進(jìn)圓柱里,水高是原來水高的1/3。
小結(jié):今后我們求圓錐體體積就用這種方法來計(jì)算。
(5)應(yīng)用鞏固
1。出示例題學(xué)生讀題,理解題意,自己解決問題。
例 一個(gè)圓錐形的零件,底面積是19平方厘米,高是12厘米,這個(gè)零件的體積是多少?
學(xué)生完成后,進(jìn)行小組交流。
你是怎樣想的和怎樣解決問題。(提問學(xué)生多人)
教師板書:
1/3 ×19×12=76(立方厘米)
答:它的體積是76立方米
2、 練習(xí)題。
一個(gè)圓錐體,半徑為6cm,高為18cm。體積是多少?(學(xué)生在黑板上只列式,反饋。)
3。出示例2:要求學(xué)生自己讀題,理解題意思。
有一個(gè)近似于圓錐的小麥堆,測(cè)得底面半徑是2米,高是1。5米。你能計(jì)算出這堆小麥的體積嗎?
(1)提問:從題目中你知道什么?
(2)學(xué)生獨(dú)立完成后教師提問。并回答同學(xué)的質(zhì)疑:3。14×()×1。5表示什么?為什么要先求圓錐的體積?得數(shù)保留整千克數(shù)是什么意思? 4。比較:例1和例2有什么地方不同?
1)直接告訴了我們底面積,而(2)沒有直接告訴,要求我們先求出底面積,再求出圓錐體積。
(四)綜合練習(xí),發(fā)展思維
1、一個(gè)圓錐形沙堆,高是1。5米,底面半徑是2米,每立方米沙重1。8噸。這堆沙約重多少噸?
2。選擇題。
每道題下面有3個(gè)答案,你認(rèn)為哪個(gè)答案正確就用手指數(shù)表示。
(1)一個(gè)圓錐體的體積是a立方米,和它等底等高的圓柱體體積是( )
⑴ a立方米 ②3a立方米 ③ 9立方米
(2)把一段圓鋼切削成一個(gè)最大的圓錐體,圓柱體體積是6立方米,圓錐體體積是( )立方米
(1)6立方米 (2)3立方米 (3)2立方米
四、小結(jié):
這節(jié)課同學(xué)們有什么收獲?你是怎樣學(xué)習(xí)的?
五、開放性作業(yè):
要使等底等高的圓柱與圓錐體積相等,你有什么辦法?(生講師課件演示)
教學(xué)反思 :
1、這節(jié)課,沒有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒水實(shí)驗(yàn),而是通過師生交流、問答、猜想等形式,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望。學(xué)生迫切希望通過實(shí)驗(yàn)來證實(shí)自己的猜想,所以做起實(shí)驗(yàn)就興趣盎然。特別是用不同的方法推到出計(jì)算公式,開闊學(xué)生思維,提高學(xué)生學(xué)習(xí)積極性。
2、通過驗(yàn)證猜想這一實(shí)踐活動(dòng),讓學(xué)生運(yùn)用學(xué)具操作探究、體驗(yàn)活動(dòng)中,去參與知識(shí)的生成過程、發(fā)展過程,主動(dòng)地發(fā)現(xiàn)知識(shí),體會(huì)數(shù)學(xué)知識(shí)的來龍去脈,培養(yǎng)學(xué)生主動(dòng)獲取知識(shí)的能力。組織學(xué)生主動(dòng)探索,在此教師成功地轉(zhuǎn)換了自己在課堂教學(xué)中的角色和作用,能根據(jù)學(xué)生已有的認(rèn)知基礎(chǔ)組織和展開教學(xué)活動(dòng),充分發(fā)揮了課堂教學(xué)中學(xué)生的主體作用。
3、小學(xué)階段學(xué)習(xí)的幾何知識(shí)是直觀幾何。小學(xué)生學(xué)習(xí)幾何知識(shí)不是靠嚴(yán)格的論證,而主要是通過觀察、操作。根據(jù)課題的特點(diǎn),本課主要采取讓學(xué)生做實(shí)驗(yàn)的方法主動(dòng)獲取知識(shí)。主要引導(dǎo)學(xué)生做了三次實(shí)驗(yàn)。第一次是比較圓柱和圓錐的底和高,強(qiáng)調(diào)等底等高的圓柱和圓錐才有一定的倍數(shù)關(guān)系;第二次,讓學(xué)生將圓錐中的水倒入與其等底等高的圓柱之中,直至三次倒完,讓學(xué)生感受到“圓錐的體積是與它等底等高的圓柱體積的1/3,圓柱的體積是與它等底等高的圓錐體積的三倍”;第三次,用沙子實(shí)驗(yàn)驗(yàn)證“不是任何一個(gè)圓錐體的體積都是任何一個(gè)圓柱體體積的三分之一”。搞清了圓錐體積公式的由來,從而理解和掌握了圓錐體積公式,培養(yǎng)了學(xué)生的觀察、操作能力和初步的空間觀念,克服了幾何形體計(jì)算公式教學(xué)中的重結(jié)論、輕過程,重記憶、輕理解,重知識(shí)、輕能力的弊病。突出了教學(xué)重點(diǎn)。
4、本課在基礎(chǔ)知識(shí)教學(xué)的基礎(chǔ)上進(jìn)行呈現(xiàn)方式和解題策略的適當(dāng)開放,較恰當(dāng)?shù)靥幚砗昧死^承和創(chuàng)新的關(guān)系。
只是,這節(jié)課學(xué)生是在教師預(yù)設(shè)引導(dǎo)中探究。為什么要學(xué)的疑念,怎樣學(xué)的策略,可能還不夠突顯,有待于探究。"
本節(jié)課我設(shè)計(jì)了以下四個(gè)教學(xué)程序:
1、談話導(dǎo)入
⑴出示圓柱:如果想知道這個(gè)容器的容積,怎么辦?
⑵出示圓錐:如果想知道這個(gè)容器的容積,怎么辦?
2、教學(xué)例五
⑴引導(dǎo)觀察:這個(gè)圓柱和圓錐有什么相同的地方?
⑵估計(jì)一下:這個(gè)圓錐的體積是圓柱體積的幾分之幾?
⑶討論:可以用什么方法來驗(yàn)證你的估計(jì)?
⑷分組驗(yàn)證;引導(dǎo)學(xué)生用適合的方法進(jìn)行操作驗(yàn)證。
⑸交流:說說自己小組是怎么驗(yàn)證的,得到的結(jié)論是什么?
⑹討論:①通過實(shí)驗(yàn),我們知道這個(gè)圓錐的容積是這個(gè)圓柱容積的三分之一,那能不能說圓錐的體積就是圓柱的體積的三分之一?為什么?應(yīng)該怎么說才準(zhǔn)確?②那怎么算出這個(gè)圓錐的容積呢?③推導(dǎo)出圓錐體積的公式(師板書)。④如果已知r和h圓錐體積公式還可以怎樣計(jì)算?如果已知d和h圓錐體積公式怎樣計(jì)算?
⑺完成“試一試”。
3、鞏固練習(xí)
做“練一練”。
4、歸納總結(jié)
通過本節(jié)課你有什么收獲?有哪些問題需要我們今后注意?
喜歡《圓錐的體積課件9篇》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼師資料,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了圓錐體積課件專題,希望您能喜歡!
相關(guān)推薦
俗話說,不打無準(zhǔn)備之仗。作為幼兒園的老師,我們都希望小朋友們能在課堂上學(xué)到知識(shí),最好的解決辦法就是準(zhǔn)備好教案來加強(qiáng)學(xué)習(xí)效率,。教案對(duì)教學(xué)過程進(jìn)行預(yù)測(cè)和推演,從而更好地實(shí)現(xiàn)教學(xué)目標(biāo)。幼兒園教案的內(nèi)容要寫些什么更好呢?為此,小編特意呈上“圓柱的體積課件教案集錦”,僅供參考,歡迎大家閱讀本文。一、教學(xué)對(duì)象...
經(jīng)驗(yàn)告訴我們,成功是留給有準(zhǔn)備的人。作為幼兒園的老師,我們都希望小朋友們能在課堂上學(xué)到知識(shí),為了給孩子提供更高效的學(xué)習(xí)效率,教案是個(gè)不錯(cuò)的選擇,教案可以幫助學(xué)生更好地進(jìn)入課堂環(huán)境中來。關(guān)于好的幼兒園教案要怎么樣去寫呢?有請(qǐng)駐留一會(huì),閱讀小編為你整理的圓的面積課件教案精選,請(qǐng)閱讀,或許對(duì)你有所幫助!一...
最新更新