因式分解課件教案。
居安思危,思則有備,有備無(wú)患。為了使每堂課能夠順利的進(jìn)展,教師通常會(huì)準(zhǔn)備好下節(jié)課的教案,為了加強(qiáng)學(xué)習(xí)效率,我們一般會(huì)事先準(zhǔn)備好教案,教案有助于老師在之后的上課教學(xué)中井然有序的進(jìn)行。你知道如何去寫好一份優(yōu)秀的幼兒園教案呢?下面是小編精心整理的"因式分解課件教案合集",更多信息請(qǐng)繼續(xù)關(guān)注本網(wǎng)站。
一、背景介紹
因式分解是代數(shù)式中的重要內(nèi)容,它與前一章整式和后一章分式聯(lián)系極為密切。因式分解的教學(xué)是在整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,因式分解方法的理論依據(jù)就是多項(xiàng)式乘法的逆變形。它不僅在多項(xiàng)式的除法、簡(jiǎn)便運(yùn)算中有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三角函數(shù)式的恒等變形提供了必要的基礎(chǔ)。因此,學(xué)好因式分解對(duì)于代數(shù)知識(shí)的后續(xù)學(xué)習(xí),具有相當(dāng)重要的意義。
二、教學(xué)設(shè)計(jì)
【教學(xué)內(nèi)容分析】
因式分解的概念是把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,它是因式分解方法的理論基礎(chǔ),也是本章中一個(gè)重要概念。教材在引入中是結(jié)合剪紙拼圖來(lái)闡述這一概念的,也可以與小學(xué)數(shù)學(xué)里因數(shù)分解的概念類比予以說(shuō)明。在教學(xué)時(shí)對(duì)因式分解這一概念不宜要求學(xué)生一次徹底了解,應(yīng)該在講授因式分解的三種基本方法時(shí),結(jié)合具體例題的分解過(guò)程和分解結(jié)果,說(shuō)明這一概念的意義,以達(dá)到逐步了解這一概念的教學(xué)目的。
【教學(xué)目標(biāo)】
1、認(rèn)知目標(biāo):(1)理解因式分解的概念和意義
(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。
2、能力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、判斷能力和創(chuàng)新能力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維能力和綜合運(yùn)用能力。
3、情感目標(biāo):培養(yǎng)學(xué)生接受矛盾的對(duì)立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的精神和實(shí)事求是的科學(xué)態(tài)度。
【教學(xué)重點(diǎn)、難點(diǎn)】
重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。
【教學(xué)準(zhǔn)備】
實(shí)物投影儀、多媒體輔助教學(xué)。
【教學(xué)過(guò)程】
㈠、情境導(dǎo)入
看誰(shuí)算得快:(搶答)
(1)若a=101,b=99,則a2-b2=___________;
(2)若a=99,b=-1,則a2-2ab+b2=____________;
(3)若x=-3,則20x2+60x=____________。
【初一年級(jí)學(xué)生活波好動(dòng),好表現(xiàn),爭(zhēng)強(qiáng)好勝。情境導(dǎo)入借助搶答的方式進(jìn)行,引進(jìn)競(jìng)爭(zhēng)機(jī)制,可以使學(xué)生在參與的過(guò)程中提高興趣,并增強(qiáng)競(jìng)爭(zhēng)意識(shí)和探究欲望。】
㈡、探究新知
1、請(qǐng)每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
【“與其拉馬喝水,不如讓它口渴”。探索最佳解題方法的過(guò)程,就是學(xué)生“口渴”的地方。由此引起學(xué)生的求知欲?!?/p>
2、觀察:a2-b2=(a+b)(a-b) ,
a2-2ab+b2 = (a-b)2 ,
20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)
【利用教師的主導(dǎo)作用,把學(xué)生的無(wú)意識(shí)的觀察轉(zhuǎn)變?yōu)橛幸庾R(shí)的觀察,同時(shí)教師應(yīng)鼓勵(lì)學(xué)生大膽描述自己的觀察結(jié)果,并及時(shí)予以肯定?!?/p>
3、類比小學(xué)學(xué)過(guò)的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)
【讓學(xué)生自己概括出所感知的知識(shí)內(nèi)容,有利于學(xué)生在實(shí)踐中感悟知識(shí)的生成過(guò)程,培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力?!?/p>
板書課題:§6.1因式分解
因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。
㈢、前進(jìn)一步
1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2 ,
(a-b)2= a2-2ab+b2,
20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?
(要注意讓學(xué)生區(qū)分因式分解與整式乘法的區(qū)別,防止學(xué)生出現(xiàn)在進(jìn)行因式分解當(dāng)中,半路又做乘法的錯(cuò)誤。)
【注重?cái)?shù)學(xué)知識(shí)間的'聯(lián)系,給學(xué)生提供探索與交流的空間,讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的生成過(guò)程,由學(xué)生發(fā)現(xiàn)整式乘法與因式分解的相互關(guān)系,培養(yǎng)學(xué)生觀察、分析問(wèn)題的能力和逆向思維能力及創(chuàng)新能力?!?/p>
2、因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2-b2=========(a+b)(a-b)
整式乘法
說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。
結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。(多媒體展示學(xué)生得出的成果)
㈣、鞏固新知
1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1 ;
(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;
(4)4x2-4x+1=(2x-1)2;
(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;
(7)k2+ +2=(k+ )2;
(8)18a3bc=3a2b?6ac。
【針對(duì)學(xué)生易犯的錯(cuò)誤,制造認(rèn)知沖突,讓學(xué)生充分暴露錯(cuò)誤,然后通過(guò)分析、討論,達(dá)到理解的效果。】
2、你能寫出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。
【學(xué)生出題熱情、積極性高,因初一學(xué)生好表現(xiàn),因而能激發(fā)學(xué)生學(xué)習(xí)興趣,激活學(xué)生的思維。】
㈤、應(yīng)用解釋
例 檢驗(yàn)下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);
(2)2x2-1=(2x+1)(2x-1);
(3)x2+3x+2=(x+1)(x+2).
分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。
練習(xí) 計(jì)算下列各題,并說(shuō)明你的算法:(請(qǐng)學(xué)生板演)
(1)872+87×13
(2)1012-992
㈥、思維拓展
1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=
2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)( ),且m=
【進(jìn)一步拓展學(xué)生在數(shù)學(xué)領(lǐng)域內(nèi)的視野,增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的興趣,使學(xué)生從小熱衷于數(shù)學(xué)的學(xué)習(xí)和探索。通過(guò)機(jī)動(dòng)題,了解學(xué)生對(duì)概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造能力,及時(shí)評(píng)價(jià),及時(shí)矯正。】
㈦、課堂回顧
今天這節(jié)課,你學(xué)到了哪些知識(shí)?有哪些收獲與感受?說(shuō)出來(lái)大家分享。
【課堂小結(jié)交給學(xué)生, 讓學(xué)生總結(jié)本節(jié)課中概念的發(fā)現(xiàn)過(guò)程,運(yùn)用概念分析問(wèn)題的過(guò)程,養(yǎng)成學(xué)生學(xué)習(xí)——總結(jié)——學(xué)習(xí)的良好習(xí)慣。唯有總結(jié)反思,才能控制思維操作,才能促進(jìn)理解,提高認(rèn)知水平,從而促進(jìn)數(shù)學(xué)觀點(diǎn)的形成和發(fā)展,更好地進(jìn)行知識(shí)建構(gòu),實(shí)現(xiàn)良性循環(huán)。】
㈧、布置作業(yè)
教科書第153的作業(yè)題。
【設(shè)計(jì)思想】
葉圣陶先生曾說(shuō)過(guò)課堂教學(xué)的最高藝術(shù)是看學(xué)生,而不是看教師,看學(xué)生能否在課堂中煥發(fā)生命的活力。因此本教學(xué)是按“投疑——感知——概括——鞏固、應(yīng)用和拓展”的敘述模式呈現(xiàn)教學(xué)內(nèi)容的,這種呈現(xiàn)方式符合七年級(jí)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)規(guī)律,使學(xué)生從被動(dòng)的學(xué)習(xí)到主動(dòng)探索和發(fā)現(xiàn)的轉(zhuǎn)化中感受到學(xué)習(xí)與探索的樂(lè)趣。本堂課先采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性,再把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高能力。并在課堂教學(xué)中,引導(dǎo)學(xué)生體會(huì)知識(shí)的發(fā)生發(fā)展過(guò)程,堅(jiān)持啟發(fā)式的教學(xué)方法,鼓勵(lì)學(xué)生充分地動(dòng)腦、動(dòng)口、動(dòng)手,積極參與到教學(xué)中來(lái),充分體現(xiàn)了學(xué)生的主動(dòng)性原則。并改變了傳統(tǒng)的言傳身教的方式,恰當(dāng)?shù)剡\(yùn)用了現(xiàn)代教育技術(shù),展現(xiàn)了一個(gè)平等、互動(dòng)的民主課堂。
第1課時(shí)
1.使學(xué)生了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形.
2.讓學(xué)生會(huì)確定多項(xiàng)式中各項(xiàng)的公因式,會(huì)用提公因式法進(jìn)行因式分解.
自主探索,合作交流.
1.通過(guò)與因數(shù)分解的類比,讓學(xué)生感悟數(shù)學(xué)中數(shù)與式的共同點(diǎn),體驗(yàn)數(shù)學(xué)的類比思想.
2.通過(guò)對(duì)因式分解的教學(xué),培養(yǎng)學(xué)生“換元”的意識(shí).
【重點(diǎn)】 因式分解的概念及提公因式法的應(yīng)用.
【難點(diǎn)】 正確找出多項(xiàng)式中各項(xiàng)的公因式.
【教師準(zhǔn)備】 多媒體.
【學(xué)生準(zhǔn)備】 復(fù)習(xí)有關(guān)乘法分配律的知識(shí).
導(dǎo)入一:
【問(wèn)題】 一塊場(chǎng)地由三個(gè)長(zhǎng)方形組成,這些長(zhǎng)方形的長(zhǎng)分別為,,,寬都是,求這塊場(chǎng)地的面積.
解法1:這塊場(chǎng)地的面積=×+×+×=++==2.
解法2:這塊場(chǎng)地的面積=×+×+×=×=×4=2.
從上面的解答過(guò)程看,解法1是按運(yùn)算順序:先算乘法,再算加減法進(jìn)行計(jì)算的,解法2是先逆用乘法分配律,再進(jìn)行計(jì)算的,由此可知解法2要簡(jiǎn)單一些.這個(gè)事實(shí)說(shuō)明,有時(shí)我們需要將多項(xiàng)式化為幾個(gè)整式的積的形式,而提公因式法就是將多項(xiàng)式化為幾個(gè)整式的積的形式的一種方法.
[設(shè)計(jì)意圖] 讓學(xué)生通過(guò)利用乘法分配律的逆運(yùn)算這一特殊算法,運(yùn)用類比思想自然地過(guò)渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).
導(dǎo)入二:
【問(wèn)題】 計(jì)算×15-×9+×2采用什么方法?依據(jù)是什么?
解法1:原式=-+==5.
解法2:原式=×(15-9+2)=×8=5.
解法1是按運(yùn)算順序:先算乘法,再算加減法進(jìn)行計(jì)算的,解法2是先逆用乘法分配律,再進(jìn)行計(jì)算的,由此可知解法2要簡(jiǎn)單一些.這個(gè)事實(shí)說(shuō)明,有時(shí)我們需要將多項(xiàng)式化為幾個(gè)整式的積的形式,而提公因式法就是把多項(xiàng)式化為幾個(gè)整式的積的形式的一種方法.
[設(shè)計(jì)意圖] 讓學(xué)生通過(guò)利用乘法分配律的逆運(yùn)算這一特殊算法,運(yùn)用類比思想自然地過(guò)渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).
一、提公因式法分解因式的概念
思路一
[過(guò)渡語(yǔ)] 上一節(jié)我們學(xué)習(xí)了什么是因式分解,那么怎樣進(jìn)行因式分解呢?我們來(lái)看下面的問(wèn)題.
如果一塊場(chǎng)地由三個(gè)長(zhǎng)方形組成,這三個(gè)長(zhǎng)方形的長(zhǎng)分別為a,b,c,寬都是,那么這塊場(chǎng)地的面積為a+b+c或(a+b+c),可以用等號(hào)來(lái)連接,即:a+b+c=(a+b+c).
大家注意觀察這個(gè)等式,等式左邊的每一項(xiàng)有什么特點(diǎn)?各項(xiàng)之間有什么聯(lián)系?等式右邊的項(xiàng)有什么特點(diǎn)?
分析:等式左邊的每一項(xiàng)都含有因式,等式右邊是與多項(xiàng)式a+b+c的乘積,從左邊到右邊的過(guò)程是因式分解.
由于是左邊多項(xiàng)式a+b+c中的各項(xiàng)a,b,c都含有的一個(gè)相同因式,因此叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式.
由上式可知,把多項(xiàng)式a+b+c寫成與多項(xiàng)式a+b+c的乘積的形式,相當(dāng)于把公因式從各項(xiàng)中提出來(lái),作為多項(xiàng)式a+b+c的一個(gè)因式,把從多項(xiàng)式a+b+c的各項(xiàng)中提出后形成的多項(xiàng)式a+b+c,作為多項(xiàng)式a+b+c的另一個(gè)因式.
總結(jié):如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種因式分解的方法叫做提公因式法.
[設(shè)計(jì)意圖] 通過(guò)實(shí)例的教學(xué),使學(xué)生明白什么是公因式和用提公因式法分解因式.
思路二
[過(guò)渡語(yǔ)] 同學(xué)們,我們來(lái)看下面的問(wèn)題,看看同學(xué)們誰(shuí)先做出來(lái).
多項(xiàng)式 ab+ac中,各項(xiàng)都含有相同的因式嗎?多項(xiàng)式 3x2+x呢?多項(xiàng)式b2+nb-b呢?
結(jié)論:多項(xiàng)式中各項(xiàng)都含有的相同因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式.
多項(xiàng)式2x2+6x3中各項(xiàng)的公因式是什么?你能嘗試將多項(xiàng)式2x2+6x3因式分解嗎?
結(jié)論:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種因式分解的方法叫做提公因式法.
[設(shè)計(jì)意圖] 從讓學(xué)生找出幾個(gè)簡(jiǎn)單多項(xiàng)式的公因式,再到讓學(xué)生嘗試將多項(xiàng)式分解因式,使學(xué)生理解公因式以及提公因式法分解因式的概念.
二、例題講解
[過(guò)渡語(yǔ)] 剛剛我們學(xué)習(xí)了因式分解的一種方法,現(xiàn)在我們嘗試下利用這種方法進(jìn)行因式分解吧.
(教材例1)把下列各式因式分解:
(1)3x+x3;
(2)7x3-21x2;
(3)8a3b2-12ab3c+ab;
(4)-24x3+12x2-28x.
〔解析〕 首先要找出各項(xiàng)的公因式,然后再提取出來(lái).要避免提取公因式后,各項(xiàng)中還有公因式,即“沒(méi)提徹底”的現(xiàn)象.
解:(1)3x+x3=x3+xx2=x(3+x2).
(2)7x3-21x2=7x2x-7x23=7x2(x-3).
(3)8a3b2-12ab3c+ab
=ab8a2b-ab12b2c+ab1
=ab(8a2b-12b2c+1).
(4)-24x3+12x2-28x
=-(24x3-12x2+28x)
=-(4x6x2-4x3x+4x7)
=-4x(6x2-3x+7).
【學(xué)生活動(dòng)】 通過(guò)剛才的練習(xí),大家互相交流,總結(jié)出提取公因式的一般步驟和容易出現(xiàn)的問(wèn)題.
總結(jié):提取公因式的步驟:(1)找公因式;(2)提公因式.
容易出現(xiàn)的問(wèn)題(以本題為例):(1)第(2)題中只提出7x作為公因式;(2)第(3)題中最后一項(xiàng)提出ab后,漏掉了“+1”;(3)第(4)題提出“-”號(hào)時(shí),沒(méi)有把后面的因式中的每一項(xiàng)都變號(hào).
教師提醒:
(1)各項(xiàng)都含有的字母的最低次冪的積是公因式的字母部分;
(2)因式分解后括號(hào)內(nèi)的多項(xiàng)式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同;
(3)若多項(xiàng)式的首項(xiàng)為“-”,則先提取“-”號(hào),然后再提取其他公因式;
(4)將分解因式后的式子再進(jìn)行整式的乘法運(yùn)算,其積應(yīng)與原式相等.
[設(shè)計(jì)意圖] 經(jīng)歷用提公因式法進(jìn)行因式分解的過(guò)程,在教師的啟發(fā)與指導(dǎo)下,學(xué)生自己歸納出提公因式的步驟及提取公因式時(shí)容易出現(xiàn)的類似問(wèn)題,為提取公因式積累經(jīng)驗(yàn).
1.提公因式法分解因式的一般形式,如:
a+b+c=(a+b+c).
這里的字母a,b,c,可以是一個(gè)系數(shù)不為1的、多字母的、冪指數(shù)大于1的單項(xiàng)式.
2.提公因式法分解因式的關(guān)鍵在于發(fā)現(xiàn)多項(xiàng)式的公因式.
3.找公因式的一般步驟:
(1)若各項(xiàng)系數(shù)是整系數(shù),則取系數(shù)的最大公約數(shù);
(2)取各項(xiàng)中相同的字母,字母的指數(shù)取最低的;
(3)所有這些因式的乘積即為公因式.
1.多項(xiàng)式-6ab2+18a2b2-12a3b2c的公因式是( )
A.-6ab2cB.-ab2
C.-6ab2D.-6a3b2c
解析:根據(jù)確定多項(xiàng)式各項(xiàng)的公因式的方法,可知公因式為-6ab2.故選C.
2.下列用提公因式法分解因式正確的是( )
A.12abc-9a2b2=3abc(4-3ab)
B.3x2-3x+6=3(x2-x+2)
C.-a2+ab-ac=-a(a-b+c)
D.x2+5x-=(x2+5x)
解析:A.12abc-9a2b2=3ab(4c-3ab),錯(cuò)誤;B.3x2-3x+6=3(x2-x+2),錯(cuò)誤;D.x2+5x-=(x2+5x-1),錯(cuò)誤.故選C.
3.下列多項(xiàng)式中應(yīng)提取的公因式為5a2b的是( )
A.15a2b-20a2b2
B.30a2b3-15ab4-10a3b2
C.10a2b-20a2b3+50a4b
D.5a2b4-10a3b3+15a4b2
解析:B.應(yīng)提取公因式5ab2,錯(cuò)誤;C.應(yīng)提取公因式10a2b,錯(cuò)誤;D.應(yīng)提取公因式5a2b2,錯(cuò)誤.故選A.
4.填空.
(1)5a3+4a2b-12abc=a( );
(2)多項(xiàng)式32p2q3-8pq4的公因式是 ;
(3)3a2-6ab+a= (3a-6b+1);
(4)因式分解:+n= ;
(5)-15a2+5a= (3a-1);
(6)計(jì)算:21×3.14-31×3.14= .
答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4
5.用提公因式法分解因式.
(1)8ab2-16a3b3;
(2)-15x-5x2;
(3)a3b3+a2b2-ab;
(4)-3a3-6a2+12a.
解:(1)8ab2(1-2a2b).
(2)-5x(3+x).
(3)ab(a2b2+ab-1).
(4)-3a(a2+2a-4).
第1課時(shí)
一、教材作業(yè)
【必做題】
教材第96頁(yè)隨堂練習(xí).
【選做題】
教材第96頁(yè)習(xí)題4.2.
二、課后作業(yè)
【基礎(chǔ)鞏固】
1.把多項(xiàng)式4a2b+10ab2分解因式時(shí),應(yīng)提取的公因式是 .
2.(20xx淮安中考)因式分解:x2-3x= .
3.分解因式:12x3-18x22+24x3=6x .
【能力提升】
4.把下列各式因式分解.
(1)3x2-6x;
(2)5x23-25x32;(執(zhí)筆作文網(wǎng) zB258.Com)
(3)-43+162-26;
(4)15x32+5x2-20x23.
【拓展探究】
5.分解因式:an+an+2+a2n.
6.觀察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….這列式子有什么規(guī)律?請(qǐng)你將猜想到的規(guī)律用含有字母n(n為自然數(shù))的式子表示出來(lái).
【答案與解析】
1.2ab
2.x(x-3)
3.(2x2-3x+42)
4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).
5.解:原式=an1+ana2+anan=an(1+a2+an).
6.解:由題中給出的幾個(gè)式子可得出規(guī)律:n2+n=n(n+1).
本節(jié)運(yùn)用類比的思想方法,在新概念的提出、新知識(shí)點(diǎn)的講授過(guò)程中,使學(xué)生易于理解和掌握.如學(xué)生在接受提公因式法時(shí),由提公因數(shù)到提公因式,由整式乘法的逆運(yùn)算到提公因式法的概念,都是利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解.
在小組討論之前,應(yīng)該留給學(xué)生充分的獨(dú)立思考的時(shí)間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問(wèn).
由于因式分解的主要目的是對(duì)多項(xiàng)式進(jìn)行恒等變形,它的作用更多的是應(yīng)用于多項(xiàng)式的計(jì)算和化簡(jiǎn),比如在以后將要學(xué)習(xí)的分式運(yùn)算、解分式方程等中都要用到因式分解的知識(shí),因此應(yīng)該注重因式分解的概念和方法的教學(xué).
隨堂練習(xí)(教材第96頁(yè))
解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).
習(xí)題4.2(教材第96頁(yè))
1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).
2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.
3.解:(1)不正確,因?yàn)樘崛〉墓蚴讲粚?duì),應(yīng)為n(2n--1). (2)不正確,因?yàn)樘崛」蚴?b后,第三項(xiàng)沒(méi)有變號(hào),應(yīng)為-b(ab-2a+3). (3)正確. (4)不正確,因?yàn)樽詈蟮慕Y(jié)果不是乘積的形式,應(yīng)為(a-2)(a+1).
提公因式法是本章的第2小節(jié),占兩個(gè)課時(shí),這是第一課時(shí),它主要讓學(xué)生經(jīng)歷從乘法分配律的逆運(yùn)算到提公因式的過(guò)程,讓學(xué)生體會(huì)數(shù)學(xué)中的一種主要思想——類比思想.運(yùn)用類比的思想方法,在新概念的提出、新知識(shí)點(diǎn)的講授過(guò)程中,可以使學(xué)生易于理解和掌握.如學(xué)生在接受提公因式法時(shí),由整式乘法的逆運(yùn)算到提公因式法的概念,就利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解,進(jìn)而使學(xué)生進(jìn)一步理解因式分解與整式乘法運(yùn)算之間的互逆關(guān)系.
已知方程組求7(x-3)2-2(3-x)3的值.
〔解析〕 將代數(shù)式分解因式,產(chǎn)生x-3與2x+兩個(gè)因式,再根據(jù)方程組整體代入,使計(jì)算簡(jiǎn)便.
解:7(x-3)2-2(3-x)3
=(x-3)2[7+2(x-3)]
=(x-3)2(7+2x-6)
=(x-3)2(2x+).
由方程組可得原式=12×6=6.
教學(xué)目標(biāo):
1、進(jìn)一步鞏固因式分解的概念; 2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解 4、應(yīng)用因式分解來(lái)解決一些實(shí)際問(wèn)題
5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣
教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問(wèn)題
教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?xí)2、3
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值
利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。
二、知識(shí)回顧
1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
(1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法
(3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解
(5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解
(7).2πR+2πr=2π(R+r) 因式分解
2、.規(guī)律總結(jié)(教師講解): 分解因式與整式乘法是互逆過(guò)程.
分解因式要注意以下幾點(diǎn): (1).分解的對(duì)象必須是多項(xiàng)式.
(2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式. (3).要分解到不能分解為止.
3、因式分解的方法
提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法
公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2
4、強(qiáng)化訓(xùn)練
試一試把下列各式因式分解:
(1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2
(3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)
三、例題講解
例1、分解因式
(1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)
(3) (4)y2+y+例2、分解因式
1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=
4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=
例3、分解因式
1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3
三、知識(shí)應(yīng)用
1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)
3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2
4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?
四、拓展應(yīng)用
1.計(jì)算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)
2、20042+20xx被20xx整除嗎?
3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?
一、背景介紹
因式分解是代數(shù)式中的重要內(nèi)容,它與前一章整式和后一章分式聯(lián)系極為密切。因式分解的教學(xué)是在整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,因式分解方法的理論依據(jù)就是多項(xiàng)式乘法的逆變形。它不僅在多項(xiàng)式的除法、簡(jiǎn)便運(yùn)算中有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三角函數(shù)式的恒等變形提供了必要的基礎(chǔ)。因此,學(xué)好因式分解對(duì)于代數(shù)知識(shí)的后續(xù)學(xué)習(xí),具有相當(dāng)重要的意義。
二、教學(xué)設(shè)計(jì)
【教學(xué)內(nèi)容分析】
因式分解的概念是把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,它是因式分解方法的理論基礎(chǔ),也是本章中一個(gè)重要概念。教材在引入中是結(jié)合剪紙拼圖來(lái)闡述這一概念的,也可以與小學(xué)數(shù)學(xué)里因數(shù)分解的概念類比予以說(shuō)明。在教學(xué)時(shí)對(duì)因式分解這一概念不宜要求學(xué)生一次徹底了解,應(yīng)該在講授因式分解的三種基本方法時(shí),結(jié)合具體例題的分解過(guò)程和分解結(jié)果,說(shuō)明這一概念的意義,以達(dá)到逐步了解這一概念的教學(xué)目的。
【教學(xué)目標(biāo)】
1、認(rèn)知目標(biāo):(1)理解因式分解的概念和意義
(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。
2、能力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、判斷能力和創(chuàng)新能力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維能力和綜合運(yùn)用能力。
3、情感目標(biāo):培養(yǎng)學(xué)生接受矛盾的對(duì)立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的精神和實(shí)事求是的科學(xué)態(tài)度。
【教學(xué)重點(diǎn)、難點(diǎn)】
重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。
【教學(xué)準(zhǔn)備】
實(shí)物投影儀、多媒體輔助教學(xué)。
【教學(xué)過(guò)程】
㈠、情境導(dǎo)入
看誰(shuí)算得快:(搶答)
(1)若a=101,b=99,則a2-b2=___________;
(2)若a=99,b=-1,則a2-2ab+b2=____________;
(3)若x=-3,則20x2+60x=____________。
【初一年級(jí)學(xué)生活波好動(dòng),好表現(xiàn),爭(zhēng)強(qiáng)好勝。情境導(dǎo)入借助搶答的方式進(jìn)行,引進(jìn)競(jìng)爭(zhēng)機(jī)制,可以使學(xué)生在參與的過(guò)程中提高興趣,并增強(qiáng)競(jìng)爭(zhēng)意識(shí)和探究欲望?!?/p>
㈡、探究新知
1、請(qǐng)每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
【“與其拉馬喝水,不如讓它口渴”。探索最佳解題方法的過(guò)程,就是學(xué)生“口渴”的地方。由此引起學(xué)生的求知欲。】
2、觀察:a2-b2=(a+b)(a-b) ,
a2-2ab+b2 = (a-b)2 ,
20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)
【利用教師的主導(dǎo)作用,把學(xué)生的無(wú)意識(shí)的觀察轉(zhuǎn)變?yōu)橛幸庾R(shí)的觀察,同時(shí)教師應(yīng)鼓勵(lì)學(xué)生大膽描述自己的觀察結(jié)果,并及時(shí)予以肯定?!?/p>
3、類比小學(xué)學(xué)過(guò)的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)
【讓學(xué)生自己概括出所感知的知識(shí)內(nèi)容,有利于學(xué)生在實(shí)踐中感悟知識(shí)的生成過(guò)程,培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力。】
板書課題:§6.1因式分解
因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。
㈢、前進(jìn)一步
1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2 ,
(a-b)2= a2-2ab+b2,
20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?
(要注意讓學(xué)生區(qū)分因式分解與整式乘法的區(qū)別,防止學(xué)生出現(xiàn)在進(jìn)行因式分解當(dāng)中,半路又做乘法的.錯(cuò)誤。)
【注重?cái)?shù)學(xué)知識(shí)間的聯(lián)系,給學(xué)生提供探索與交流的空間,讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的生成過(guò)程,由學(xué)生發(fā)現(xiàn)整式乘法與因式分解的相互關(guān)系,培養(yǎng)學(xué)生觀察、分析問(wèn)題的能力和逆向思維能力及創(chuàng)新能力?!?/p>
2、因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2-b2=========(a+b)(a-b)
整式乘法
說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。
結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。(多媒體展示學(xué)生得出的成果)
㈣、鞏固新知
1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1 ;
(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;
(4)4x2-4x+1=(2x-1)2;
(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;
(7)k2+ +2=(k+ )2;
(8)18a3bc=3a2b?6ac。
【針對(duì)學(xué)生易犯的錯(cuò)誤,制造認(rèn)知沖突,讓學(xué)生充分暴露錯(cuò)誤,然后通過(guò)分析、討論,達(dá)到理解的效果?!?/p>
2、你能寫出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。
【學(xué)生出題熱情、積極性高,因初一學(xué)生好表現(xiàn),因而能激發(fā)學(xué)生學(xué)習(xí)興趣,激活學(xué)生的思維。】
㈤、應(yīng)用解釋
例 檢驗(yàn)下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);
(2)2x2-1=(2x+1)(2x-1);
(3)x2+3x+2=(x+1)(x+2).
分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。
練習(xí) 計(jì)算下列各題,并說(shuō)明你的算法:(請(qǐng)學(xué)生板演)
(1)872+87×13
(2)1012-992
㈥、思維拓展
1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=
2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)( ),且m=
【進(jìn)一步拓展學(xué)生在數(shù)學(xué)領(lǐng)域內(nèi)的視野,增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的興趣,使學(xué)生從小熱衷于數(shù)學(xué)的學(xué)習(xí)和探索。通過(guò)機(jī)動(dòng)題,了解學(xué)生對(duì)概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造能力,及時(shí)評(píng)價(jià),及時(shí)矯正。】
㈦、課堂回顧
今天這節(jié)課,你學(xué)到了哪些知識(shí)?有哪些收獲與感受?說(shuō)出來(lái)大家分享。
【課堂小結(jié)交給學(xué)生, 讓學(xué)生總結(jié)本節(jié)課中概念的發(fā)現(xiàn)過(guò)程,運(yùn)用概念分析問(wèn)題的過(guò)程,養(yǎng)成學(xué)生學(xué)習(xí)——總結(jié)——學(xué)習(xí)的良好習(xí)慣。唯有總結(jié)反思,才能控制思維操作,才能促進(jìn)理解,提高認(rèn)知水平,從而促進(jìn)數(shù)學(xué)觀點(diǎn)的形成和發(fā)展,更好地進(jìn)行知識(shí)建構(gòu),實(shí)現(xiàn)良性循環(huán)?!?/p>
㈧、布置作業(yè)
教科書第153的作業(yè)題。
【設(shè)計(jì)思想】
葉圣陶先生曾說(shuō)過(guò)課堂教學(xué)的最高藝術(shù)是看學(xué)生,而不是看教師,看學(xué)生能否在課堂中煥發(fā)生命的活力。因此本教學(xué)是按“投疑——感知——概括——鞏固、應(yīng)用和拓展”的敘述模式呈現(xiàn)教學(xué)內(nèi)容的,這種呈現(xiàn)方式符合七年級(jí)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)規(guī)律,使學(xué)生從被動(dòng)的學(xué)習(xí)到主動(dòng)探索和發(fā)現(xiàn)的轉(zhuǎn)化中感受到學(xué)習(xí)與探索的樂(lè)趣。本堂課先采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性,再把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高能力。并在課堂教學(xué)中,引導(dǎo)學(xué)生體會(huì)知識(shí)的發(fā)生發(fā)展過(guò)程,堅(jiān)持啟發(fā)式的教學(xué)方法,鼓勵(lì)學(xué)生充分地動(dòng)腦、動(dòng)口、動(dòng)手,積極參與到教學(xué)中來(lái),充分體現(xiàn)了學(xué)生的主動(dòng)性原則。并改變了傳統(tǒng)的言傳身教的方式,恰當(dāng)?shù)剡\(yùn)用了現(xiàn)代教育技術(shù),展現(xiàn)了一個(gè)平等、互動(dòng)的民主課堂。
我說(shuō)課的題目是選自華東師大版,八年級(jí)上冊(cè),第十四章第四節(jié),因式分解,這是初中數(shù)學(xué)傳統(tǒng)的經(jīng)典,在新課標(biāo)的理念下,重新理解它深刻的內(nèi)涵。
為此,我設(shè)定說(shuō)課程序是:
一、重新審視因式分解的教育價(jià)值
二、教材處理的設(shè)想
三、教學(xué)總體設(shè)計(jì)
四、教學(xué)過(guò)程概述
(一)重新審視因式分解的教育價(jià)值
傳統(tǒng)的因式分解,是數(shù)學(xué)的工具使學(xué)生熟練掌握一些因式分解技能技巧,本來(lái)十分簡(jiǎn)單的問(wèn)題演繹得十分復(fù)雜(如填數(shù)法,拆項(xiàng)法,湊和法,十字相乘法)
新課程把因式分解作為培養(yǎng)學(xué)生逆向思維,全面思考,靈活解決矛盾的載體。為此,淡化理論。簡(jiǎn)化難題,緊緊掌握最基本的教學(xué)方法(提取公因式法和公式法)即可。這是新課程體現(xiàn)教育價(jià)值最明顯的變化。為此,在學(xué)生思維方法和對(duì)世上的事,要正,反兩方面認(rèn)識(shí)上下功夫,是這節(jié)課的重要所在。
通過(guò)整式乘法與因式分解互為逆向變換,使學(xué)生澄清這種逆是反過(guò)來(lái)的變換,不是逆運(yùn)算—是教學(xué)的難點(diǎn)(逆運(yùn)算,是在一個(gè)算式中,以兩種形式不同實(shí)質(zhì)不變的兩種運(yùn)算,而因式分解是一種恒等變換的兩種說(shuō)法)
為實(shí)現(xiàn)本節(jié)課的教育價(jià)值,在教學(xué)目標(biāo)的確定上,重點(diǎn)考慮我的學(xué)生理解能力弱,善于模仿,滿足于一知半解,我確定:
1、知識(shí)的能力目標(biāo):理解因式分解的意義,掌握提取公因式法和公式法,激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生創(chuàng)編因式分解題目的能力
2、方法與過(guò)程目標(biāo):采用自學(xué)自練的方法,逐見打開學(xué)生思維的大門,學(xué)會(huì)兩分法看問(wèn)題,體驗(yàn)知識(shí)發(fā)生過(guò)程就是學(xué)生思維發(fā)展的全過(guò)程
3、情感態(tài)度與價(jià)值觀:通過(guò)情境教學(xué),使學(xué)生在參與中激發(fā)學(xué)習(xí)情感,關(guān)注每一個(gè)學(xué)生的思維變化,鼓勵(lì)成功全面體現(xiàn)學(xué)生的價(jià)值觀,使學(xué)生滿腔熱忱,科學(xué)積極的態(tài)度,投入本節(jié)課的學(xué)習(xí)
(二)教材處理設(shè)想
我以我是教學(xué)資源的開發(fā)者的身份,重新組織教學(xué)內(nèi)容,增加教學(xué)情境的創(chuàng)設(shè),明確目的與動(dòng)機(jī),用實(shí)際問(wèn)題是學(xué)生體驗(yàn)到這節(jié)內(nèi)容的價(jià)值(見教學(xué)過(guò)程)
(三)教學(xué)總體設(shè)計(jì)
教學(xué)總體框架:教師設(shè)計(jì)生活中的實(shí)際問(wèn)題,使學(xué)生在問(wèn)題情境中展開思考→通過(guò)揭示因式分解的概念學(xué)習(xí)因式分解的意義→學(xué)生實(shí)踐探索,發(fā)現(xiàn)提取公因式和公式法→熟練運(yùn)用這種方法解題,發(fā)展學(xué)生的理性思維→通過(guò)學(xué)生的編題活動(dòng),培養(yǎng)學(xué)生思維創(chuàng)造性。
教學(xué)的主體是概念與方法20分鐘訓(xùn)練上主題部分由學(xué)生自主探索,合作學(xué)習(xí)。
(四)教學(xué)過(guò)程概述
教學(xué)環(huán)節(jié)一:創(chuàng)設(shè)情境:“去過(guò)本溪嗎?”“本溪的著名礦產(chǎn)是什么?”〈鐵礦〉本溪歪頭山的鐵礦石,每噸含鐵75%,采礦工人第一天采礦石203噸,那么,第一天礦石含鐵多少?(75%×203)第二天采礦石198噸含鐵(75%×198)第三天采礦216噸,含鐵(75%×216)現(xiàn)將這三天采礦石的含鐵量總數(shù)用代數(shù)式表示:75%×203+75%×198+75%×216,還可表示:75%(203+198+216),若果用a表示75%,用x、y、z表示三天的采礦數(shù)就有ax+ay+az=a(x+y+z)
通過(guò)此例,揭示因式分解的概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,就是因式分解,結(jié)合ax+ay+az=a(x+y+z)揭示,這種方法叫提取公因式法“正好相反”通過(guò)討論,認(rèn)識(shí)到整式乘法與因式分解不是逆運(yùn)算,而是互逆變換,從而突破了教學(xué)難點(diǎn),實(shí)現(xiàn)了教學(xué)的第一目標(biāo)
教學(xué)環(huán)節(jié)二:思維在探索中展開:教學(xué)中,抓住“反過(guò)來(lái)”讓學(xué)生從思維的逆向考慮,如何分解因式,這里在學(xué)生完成
a(x+y+z)=ax+ay+az的基礎(chǔ)上,再完成
ax+ay+az=a(x+y+z)
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)(a+b)
(制課件)
整式乘法因式分解
原型單項(xiàng)式與多項(xiàng)式、多項(xiàng)式與多項(xiàng)式相乘單項(xiàng)式與單項(xiàng)式、單項(xiàng)式與多項(xiàng)式、多項(xiàng)式與多項(xiàng)式相加
結(jié)果多項(xiàng)式因式乘積
范圍都能完成不能完成:3ab+5ac+7mn
在學(xué)生的實(shí)踐過(guò)程中,認(rèn)識(shí)到多項(xiàng)式的因式分解是有條件限制的,不是所有的多項(xiàng)式都能因式分解。因此,會(huì)觀察,判斷,十分重要。
教學(xué)環(huán)節(jié)三:思維在展開教學(xué)中定勢(shì):本節(jié)課重點(diǎn),掌握1、提取公因式法2、公式法對(duì)于這一新知識(shí)點(diǎn),學(xué)生感到陌生,必須先使他們頭腦中牢記,這就是先形成的思維定式
例如,公式法中,平方差公式a2—b2=(a+b)(a—b)
如—a2+25b216x2—4/9y2
特點(diǎn):1兩項(xiàng)式2平方3異號(hào)
教學(xué)環(huán)節(jié)四:思維在編題中創(chuàng)新:學(xué)生在認(rèn)識(shí)整式乘法與因式分解的關(guān)系后,就不難編出很多因式分解的題目來(lái)(要求編題中,簡(jiǎn)單,明了,易解)
總之,教學(xué)的著眼點(diǎn),不是熟練技能,而是發(fā)展思維,使學(xué)生在學(xué)習(xí)情感,態(tài)度的價(jià)值觀上發(fā)生深刻的變化。
課型 復(fù)習(xí)課 教法 講練結(jié)合
教學(xué)目標(biāo)(知識(shí)、能力、教育)
1.了解分解因式的意義,會(huì)用提公因式法、 平方差公式和完全平方公式(直接用公式不超過(guò)兩次)分解因式(指數(shù)是正整數(shù)).
2.通過(guò)乘法公式 , 的逆向變形,進(jìn)一步發(fā)展學(xué)生觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力
教學(xué)重點(diǎn) 掌握用提取公因式法、公式法分解因式
教學(xué)難點(diǎn) 根據(jù)題目的形式和特征 恰當(dāng)選擇方法進(jìn)行分解,以提高綜合解題能力。
教學(xué)媒體 學(xué)案
教學(xué)過(guò)程
一:【 課前預(yù)習(xí)】
(一):【知識(shí)梳理】
1.分解因式:把一個(gè)多項(xiàng)式化成 的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.
2.分解困式的方法:
⑴提公團(tuán)式法:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種分解因式的方法叫做提公因式法.
⑵運(yùn)用公式法:平方差公式: ;
完全平方公式: ;
3.分解因式的步驟:
(1)分解 因式時(shí),首先考慮是否有公因式,如果有公因式,一定先提取公團(tuán)式,然后再考慮是否能用公式法 分解.
(2)在用公式時(shí),若是兩項(xiàng),可考慮用平方差公式;若是三項(xiàng),可考慮用完全平方公式;若是三項(xiàng)以上,可先進(jìn)行適當(dāng)?shù)姆纸M,然后分解因式。
4.分解因式時(shí)常見的思維誤區(qū):
提公因式時(shí),其公因式應(yīng)找字母指數(shù)最低的,而不是以首項(xiàng)為準(zhǔn).若有一項(xiàng)被全部提出,括號(hào)內(nèi)的項(xiàng) 1易漏掉.分解不徹底,如保留中括號(hào)形式,還能繼續(xù)分解等
(二):【課前練習(xí)】
1.下列各組多項(xiàng)式中沒(méi)有公因式的是( )
A.3x-2與 6x2-4x B.3(a-b)2與11(b-a)3
C.mxmy與 nynx D.aba c與 abbc
2. 下列各題中,分解因式錯(cuò)誤的是( )
3. 列多項(xiàng)式能用平方差公式分解因式的是()
4. 分解因式:x2+2xy+y2-4 =_____
5. 分解因式:(1) ;
(2) ;(3) ;
(4) ;(5)以上三題用了 公式
二:【經(jīng)典考題剖析】
1. 分解因式:
(1) ;(2) ;(3) ;(4)
分析:①因式分解時(shí),無(wú)論有幾項(xiàng),首先考慮提取公因式。提公因式時(shí),不僅注意數(shù),也要 注意字母,字母可能是單項(xiàng)式也可能是多項(xiàng)式,一次提盡。
②當(dāng)某項(xiàng)完全提出后,該項(xiàng)應(yīng)為1
③注意 ,
④分解結(jié)果(1)不帶中括號(hào);(2)數(shù)字因數(shù)在前,字母因數(shù)在后;單項(xiàng)式在前,多項(xiàng)式在后;(3)相同因式寫成冪的形式;(4 )分解結(jié)果應(yīng)在指定范圍內(nèi)不能再分解為止;若無(wú)指定范圍,一般在有理數(shù)范圍內(nèi)分解。
2. 分解因式:(1) ;(2) ;(3)
分析:對(duì)于二次三項(xiàng)齊次式,將其中一個(gè)字母看作末知數(shù),另一個(gè)字母視為常數(shù)。首先考慮提公因式后,由余下因式的項(xiàng)數(shù)為3項(xiàng),可考慮完全平方式或十字相乘法繼續(xù)分解;如果項(xiàng)數(shù)為2,可考慮平方差、立方差、立方和公式。(3)題無(wú)公因式,項(xiàng)數(shù)為2項(xiàng),可考慮平方差公式先分解開,再由項(xiàng)數(shù)考慮選擇方法繼續(xù)分解。
3. 計(jì)算:(1)
(2)
分析:(1)此題先分解因式后約分,則余下首尾兩數(shù)。
(2)分解后,便有規(guī)可循,再求1到20xx的和。
4. 分解因式:(1) ;(2)
分析:對(duì)于四項(xiàng)或四項(xiàng)以上的多項(xiàng)式的因式分解,一般采用分組分解法,
5. (1)在實(shí)數(shù)范圍內(nèi)分解因式: ;
(2)已知 、 、 是△ABC的三邊,且滿足 ,
求證:△ABC為等邊三角形。
分析:此題給出的是三邊之間的關(guān)系,而要證等邊三角形,則須考慮證 ,
從已知給出的等式結(jié)構(gòu)看出,應(yīng)構(gòu)造出三個(gè)完全平方式 ,
即可得證,將原式兩邊同乘以2即可。略證:
即△ABC為等邊三角形。
三:【課后訓(xùn)練】
1. 若 是一個(gè)完全平方式,那么 的值是( )
A.24 B.12 C.12 D.24
2. 把多項(xiàng)式 因式分解的結(jié)果是( )
A. B. C. D.
3. 如果二次三項(xiàng)式 可分解為 ,則 的 值為( )
A .-1 B.1 C. -2 D.2
4. 已知 可以被在60~70之間的兩個(gè)整數(shù)整除,則這兩個(gè)數(shù)是( )
A.61、63 B.61、65 C.61、67 D.63、65
5. 計(jì)算:19982002= , = 。
6. 若 ,那么 = 。
7. 、 滿足 ,分解因式 = 。
8. 因式分解:
(1) ;(2)
(3) ;(4)
9. 觀察下列等式:
想一想,等式左邊各項(xiàng)冪的底數(shù)與右邊冪的底數(shù)有何關(guān) 系?猜一猜可引出什么規(guī)律?用等式將其規(guī)律表示出來(lái): 。
10. 已知 是△ABC的三邊,且滿足 ,試判斷△ABC的形狀。閱讀下面解題過(guò)程:
解:由 得:
①
②
即 ③
△ABC為Rt△。 ④
試問(wèn):以上解題過(guò)程是否正確: ;若不正確,請(qǐng)指出錯(cuò)在哪一步?(填代號(hào)) ;錯(cuò)誤原因是 ;本題結(jié)論應(yīng)為 。
四:【課后小結(jié)】
布置作業(yè) 地綱
15.1.1 整式
教學(xué)目標(biāo)
1.單項(xiàng)式、單項(xiàng)式的定義.
2.多項(xiàng)式、多項(xiàng)式的次數(shù).
3、理解整式概念.
教學(xué)重點(diǎn)
單項(xiàng)式及多項(xiàng)式的有關(guān)概念.
教學(xué)難點(diǎn)
單項(xiàng)式及多項(xiàng)式的有關(guān)概念.
教學(xué)過(guò)程
Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境
在七年級(jí),我們已經(jīng)學(xué)習(xí)了用字母可以表示數(shù),思考下列問(wèn)題
1.要表示△ABC的周長(zhǎng)需要什么條件?要表示它的面積呢?
2.小王用七小時(shí)行駛了Skm的路程,請(qǐng)問(wèn)他的平均速度是多少?
結(jié)論:
1、要表示△ABC的周長(zhǎng),需要知道它的各邊邊長(zhǎng).要表示△ABC的面積需要知道一條邊長(zhǎng)和這條邊上的高.如果設(shè)BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長(zhǎng)可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.
2.小王的平均速度是 .
問(wèn)題:這些式子有什么特征呢?
(1)有數(shù)字、有表示數(shù)字的字母.
(2)數(shù)字與字母、字母與字母之間還有運(yùn)算符號(hào)連接.
歸納:用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù)的字母連接起來(lái)的式子叫做代數(shù)式.
判斷上面得到的三個(gè)式子:a+b+c、 ch、 是不是代數(shù)式?(是)
代數(shù)式可以簡(jiǎn)明地表示數(shù)量和數(shù)量的關(guān)系.今天我們就來(lái)學(xué)習(xí)和代數(shù)式有關(guān)的整式.
Ⅱ.明確和鞏固整式有關(guān)概念
(出示投影)
結(jié)論:(1)正方形的周長(zhǎng):4x.
(2)汽車走過(guò)的路程:vt.
(3)正方體有六個(gè)面,每個(gè)面都是正方形,這六個(gè)正方形全等,所以它的表面積為6a2;正方體的體積為長(zhǎng)×寬×高,即a3.
(4)n的相反數(shù)是-n.
分析這四個(gè)數(shù)的特征.
它們符合代數(shù)式的定義.這五個(gè)式子都是數(shù)與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運(yùn)算符號(hào).還可以發(fā)現(xiàn)這五個(gè)代數(shù)式中字母指數(shù)各不相同,字母的個(gè)數(shù)也不盡相同.
請(qǐng)同學(xué)們閱讀課本P160~P161單項(xiàng)式有關(guān)概念.
根據(jù)這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數(shù)式中,哪些是單項(xiàng)式?是單項(xiàng)式的,寫出它的系數(shù)和次數(shù).
結(jié)論:4x、vt、6a2、a3、-n、 ch是單項(xiàng)式.它們的系數(shù)分別是4、1、6、1、-1、 .它們的次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項(xiàng)式;vt、6a2、 ch都是二次單項(xiàng)式;a3是三次單項(xiàng)式.
問(wèn)題:vt中v和t的指數(shù)都是1,它不是一次單項(xiàng)式嗎?
結(jié)論:不是.根據(jù)定義,單項(xiàng)式vt中含有兩個(gè)字母,所以它的次數(shù)應(yīng)該是這兩個(gè)字母的指數(shù)的和,而不是單個(gè)字母的指數(shù),所以vt是二次單項(xiàng)式而不是一次單項(xiàng)式.
生活中不僅僅有單項(xiàng)式,像a+b+c,它不是單項(xiàng)式,和單項(xiàng)式有什么聯(lián)系呢?
寫出下列式子(出示投影)
結(jié)論:(1)t-5.(2)3x+5y+2z.
(3)三角尺的面積應(yīng)是直角三角形的面積減去圓的面積,即 ab-3.12r2.
(4)建筑面積等于四個(gè)矩形的面積之和.而右邊兩個(gè)已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.
我們可以觀察下列代數(shù)式:
a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項(xiàng)式的和組成的式子.是多個(gè)單項(xiàng)式的和,能不能叫多項(xiàng)式?
這樣推理合情合理.請(qǐng)看投影,熟悉下列概念.
根據(jù)定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請(qǐng)分別指出它們的項(xiàng)和次數(shù).
a+b+c的項(xiàng)分別是a、b、c.
t-5的項(xiàng)分別是t、-5,其中-5是常數(shù)項(xiàng).
3x+5y+2z的項(xiàng)分別是3x、5y、2z.
ab-3.12r2的項(xiàng)分別是 ab、-3.12r2.
x2+2x+18的項(xiàng)分別是x2、2x、18. 找多項(xiàng)式的次數(shù)應(yīng)抓住兩條,一是找準(zhǔn)每個(gè)項(xiàng)的次數(shù),二是取每個(gè)項(xiàng)次數(shù)的最大值.根據(jù)這兩條很容易得到這五個(gè)多項(xiàng)式中前三個(gè)是一次多項(xiàng)式,后兩個(gè)是二次多項(xiàng)式.
這節(jié)課,通過(guò)探究我們得到單項(xiàng)式和多項(xiàng)式的有關(guān)概念,它們可以反映變化的世界.同時(shí),我們也到符號(hào)的魅力所在.我們把單項(xiàng)式與多項(xiàng)式統(tǒng)稱為整式.
Ⅲ.隨堂練習(xí)
1.課本P162練習(xí)
Ⅳ.課時(shí)小結(jié)
通過(guò)探究,我們了解了整式的概念.理解并掌握單項(xiàng)式、多項(xiàng)式的有關(guān)概念是本節(jié)的重點(diǎn),特別是它們的次數(shù).在現(xiàn)實(shí)情景中進(jìn)一步理解了用字母表示數(shù)的意義,發(fā)展符號(hào)感.
Ⅴ.課后作業(yè)
1.課本P165~P166習(xí)題15.1─1、5、8、9題.
2.預(yù)習(xí)“整式的加減”.
課后作業(yè):《課堂感悟與探究》
15.1.2 整式的加減(1)
教學(xué)目的:
1、解字母表示數(shù)量關(guān)系的過(guò)程,發(fā)展符號(hào)感。
2、會(huì)進(jìn)行整式加減的運(yùn)算,并能說(shuō)明其中的算理,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力。
教學(xué)重點(diǎn):
會(huì)進(jìn)行整式加減的運(yùn)算,并能說(shuō)明其中的算理。
教學(xué)難點(diǎn):
正確地去括號(hào)、合并同類項(xiàng),及符號(hào)的正確處理。
教學(xué)過(guò)程:
一、課前練習(xí):
1、填空:整式包括 和
2、單項(xiàng)式 的系數(shù)是 、次數(shù)是
3、多項(xiàng)式 是 次 項(xiàng)式,其中二次項(xiàng)
系數(shù)是 一次項(xiàng)是 ,常數(shù)項(xiàng)是
4、下列各式,是同類項(xiàng)的一組是( )
(A) 與 (B) 與 (C) 與
5、去括號(hào)后合并同類項(xiàng):
二、探索練習(xí):
1、如果用a 、b分別表示一個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)兩位數(shù)可以表示為 交換這個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字后得到的兩位數(shù)為
這兩個(gè)兩位數(shù)的和為
2、如果用a 、b、c分別表示一個(gè)三位數(shù)的百位數(shù)字、十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)三位數(shù)可以表示為 交換這個(gè)三位數(shù)的百位數(shù)字和個(gè)位數(shù)字后得到的三位數(shù)為
這兩個(gè)三位數(shù)的差為
●議一議:在上面的兩個(gè)問(wèn)題中,分別涉及到了整式的什么運(yùn)算?
說(shuō)說(shuō)你是如何運(yùn)算的?
▲整式的加減運(yùn)算實(shí)質(zhì)就是
運(yùn)算的結(jié)果是一個(gè)多項(xiàng)式或單項(xiàng)式。
三、鞏固練習(xí):
1、填空:(1) 與 的差是
(2)、單項(xiàng)式 、 、 、 的和為
(3)如圖所示,下面為由棋子所組成的三角形,
一個(gè)三角形需六個(gè)棋子,三個(gè)三角形需
( )個(gè)棋子,n個(gè)三角形需 個(gè)棋子
2、計(jì)算:
(1)
(2)
(3)
3、(1)求 與 的和
(2)求 與 的差
4、先化簡(jiǎn),再求值: 其中
四、提高練習(xí):
1、若A是五次多項(xiàng)式,B是三次多項(xiàng)式,則A+B一定是
(A)五次整式 (B)八次多項(xiàng)式
(C)三次多項(xiàng)式 (D)次數(shù)不能確定
2、足球比賽中,如果勝一場(chǎng)記3a分,平一場(chǎng)記a分,負(fù)一場(chǎng)
記0分,那么某隊(duì)在比賽勝5場(chǎng),平3場(chǎng),負(fù)2場(chǎng),共積多
少分?
3、一個(gè)兩位數(shù)與把它的數(shù)字對(duì)調(diào)所成的數(shù)的和,一定能被14
整除,請(qǐng)證明這個(gè)結(jié)論。
4、如果關(guān)于字母x的二次多項(xiàng)式 的值與x的取值無(wú)關(guān),
試求m、n的值。
五、小結(jié):整式的加減運(yùn)算實(shí)質(zhì)就是去括號(hào)和合并同類項(xiàng)。
六、作業(yè):第8頁(yè)習(xí)題1、2、3
15.1.2整式的加減(2)
教學(xué)目標(biāo):1.會(huì)進(jìn)行整式加減的運(yùn)算,并能說(shuō)明其中的算理,發(fā)展有條理的思考及其語(yǔ)言表達(dá)能力。
2.通過(guò)探索規(guī)律的問(wèn)題,進(jìn)一步符號(hào)表示的意義,發(fā)展符號(hào)感,發(fā)展推理能力。
教學(xué)重點(diǎn):整式加減的運(yùn)算。
教學(xué)難點(diǎn):探索規(guī)律的猜想。
教學(xué)方法:嘗試練習(xí)法,討論法,歸納法。
教學(xué)用具:投影儀
教學(xué)過(guò)程:
I探索練習(xí):
擺第1個(gè)“小屋子”需要5枚棋子,擺第2個(gè)需要 枚棋子,擺第3個(gè)需要 枚棋子。按照這樣的方式繼續(xù)擺下去。
(1)擺第10個(gè)這樣的“小屋子”需要 枚棋子
(2)擺第n個(gè)這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個(gè)問(wèn)題嗎?小組討論。
二、例題講解:
三、鞏固練習(xí):
1、計(jì)算:
(1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
(3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,計(jì)算:(1)B-A (2)A-3B
3、列方程解應(yīng)用題:三角形三個(gè)內(nèi)角的和等于180°,如果三角形中第一個(gè)角等于第二個(gè)角的3倍,而第三個(gè)角比第二個(gè)角大15°,那么
(1)第一個(gè)角是多少度?
(2)其他兩個(gè)角各是多少度?
四、提高練習(xí):
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問(wèn)C是什么樣的多項(xiàng)式?
2、設(shè)A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+
(y+3)2=0,且B-2A=a,求A的值。
3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對(duì)應(yīng)點(diǎn)如圖:
試化簡(jiǎn):│a│-│a+b│+│c-a│+│b+c│
小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對(duì)整式加減進(jìn)行運(yùn)算。
作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。
教學(xué)目標(biāo):
1、 理解運(yùn)用平方差公式分解因式的方法。
2、 掌握提公因式法和平方差公式分解因式的綜合運(yùn)用。
3、 進(jìn)一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問(wèn)題的能力。
教學(xué)重點(diǎn):
運(yùn)用平方差公式分解因式。
教學(xué)難點(diǎn):
高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運(yùn)用。
教學(xué)案例:
我們數(shù)學(xué)組的觀課議課主題:
1、關(guān)注學(xué)生的合作交流
2、如何使學(xué)困生能積極參與課堂交流。
在精心備課過(guò)程中,我設(shè)計(jì)了這樣的自學(xué)提示:
1、整式乘法中的平方差公式是___,如何用語(yǔ)言描述?把上述公式反過(guò)來(lái)就得到_____,如何用語(yǔ)言描述?
2、下列多項(xiàng)式能用平方差公式分解因式嗎?若能,請(qǐng)寫出分解過(guò)程,若不能,說(shuō)出為什么?
①-x2+y2 ②-x2-y2 ③4-9x2
④ (x+y)2-(x-y)2 ⑤ a4-b4
3、試總結(jié)運(yùn)用平方差公式因式分解的條件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?
5、試總結(jié)因式分解的步驟是什么?
師巡回指導(dǎo),生自主探究后交流合作。
生交流熱情很高,但把全部問(wèn)題分析完已用了30分鐘。
生展示自學(xué)成果。
生1: -x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但第二種方法提出負(fù)號(hào)后,一定要注意括號(hào)里的各項(xiàng)要變號(hào)。
生3:4-9x2 也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對(duì),應(yīng)分解為(2+3x)(2-3x),要運(yùn)用平方差公式必須化為兩個(gè)數(shù)或整式的平方差的形式。
生5: a4-b4可分解為(a2+b2)(a2-b2)
生6:不對(duì),a2-b2 還能繼續(xù)分解為a+b)(a-b)
師:大家爭(zhēng)論的很好,運(yùn)用平方差公式分解因式,必須化為兩個(gè)數(shù)或兩個(gè)整式的平方的差的形式,另因式分解必須分解到不能再分解為止?!?/p>
反思:這節(jié)課我備課比較認(rèn)真,自學(xué)提示的設(shè)計(jì)也動(dòng)了一番腦筋,為讓學(xué)生順利得出運(yùn)用平方差公式因式分解的條件,我設(shè)計(jì)了問(wèn)題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計(jì)了問(wèn)題4,自認(rèn)為,本節(jié)課一定會(huì)上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會(huì)很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒(méi)有按計(jì)劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨(dú)立完成,反思這節(jié)課主要有以下幾個(gè)問(wèn)題:
(1) 我在備課時(shí),過(guò)高估計(jì)了學(xué)生的能力,問(wèn)題2中的③、④、⑤ 多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時(shí),多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時(shí)間,也分散了學(xué)生的注意力,導(dǎo)致難點(diǎn)、重點(diǎn)不突出,若能把問(wèn)題2改為:
下列多項(xiàng)式能用平方差公式因式分解嗎?為什么?可能效果會(huì)更好。
(2) 教師備課時(shí),要考慮學(xué)生的知識(shí)層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進(jìn),切莫過(guò)于心急,過(guò)分追求課堂容量、習(xí)題類型全等等,例如在問(wèn)題2的設(shè)計(jì)時(shí)可寫一些簡(jiǎn)單的,像④、⑤ 可到練習(xí)時(shí)再出現(xiàn),發(fā)現(xiàn)問(wèn)題后再?gòu)?qiáng)調(diào)、歸納,效果也可能會(huì)更好。
我及時(shí)調(diào)整了自學(xué)提示的內(nèi)容,在另一個(gè)班也上了這節(jié)課。果然,學(xué)生的討論有了重點(diǎn),很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非?;钴S,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時(shí)有點(diǎn)不能應(yīng)對(duì)自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來(lái):“我們?cè)僮鰩最}試試。”生又開始緊張地練習(xí)……下課后,無(wú)意間發(fā)現(xiàn)竟還有好幾個(gè)同學(xué)課后題沒(méi)做。原因是預(yù)習(xí)時(shí)不會(huì),上課又沒(méi)時(shí)間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒(méi)改正,原因是上課慌著展示自己,沒(méi)顧上改……??磥?lái),以后上課不能單聽學(xué)生的齊答,要發(fā)揮組長(zhǎng)的職責(zé),注重過(guò)關(guān)落實(shí)。給學(xué)生一點(diǎn)機(jī)動(dòng)時(shí)間,讓學(xué)習(xí)有困難的學(xué)生有機(jī)會(huì)釋疑,練習(xí)不在于多,要注意融會(huì)貫通,會(huì)舉一反三。
確實(shí),“學(xué)海無(wú)涯,教海無(wú)邊”。我們備課再認(rèn)真,預(yù)設(shè)再周全,面對(duì)不同的學(xué)生,不同的學(xué)情,仍然會(huì)產(chǎn)生新的問(wèn)題,“沒(méi)有最好,只有更好!”我會(huì)一直探索、努力,不斷完善教學(xué)設(shè)計(jì),更新教育觀念,直到永遠(yuǎn)……
教學(xué)目標(biāo)
1、 會(huì)運(yùn)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法。
2、 會(huì)運(yùn)用因式分解解簡(jiǎn)單的方程。
二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):
教學(xué)重點(diǎn)
因式分解在多項(xiàng)式除法和解方程兩方面的應(yīng)用。
教學(xué)難點(diǎn):
應(yīng)用因式分解解方程涉及較多的推理過(guò)程。
三、教學(xué)過(guò)程
(一)引入新課
1、 知識(shí)回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應(yīng)用平方差公式: = (a+b) (a—b)③應(yīng)用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y
(二)師生互動(dòng),講授新課
1、運(yùn)用因式分解進(jìn)行多項(xiàng)式除法例1 計(jì)算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一個(gè)小問(wèn)題 :這里的x能等于3/2嗎 ?為什么?
想一想:那么(4x —9) (3—2x) 呢?練習(xí):課本P162課內(nèi)練習(xí)
合作學(xué)習(xí)
想一想:如果已知 ( )( )=0 ,那么這兩個(gè)括號(hào)內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢? (讓學(xué)生自己思考、相互之間討論?。┦聦?shí)上,若AB=0 ,則有下面的結(jié)論:(1)A和B同時(shí)都為零,即A=0,且B=0(2)A和B中有一個(gè)為零,即A=0,或B=0
試一試:你能運(yùn)用上面的結(jié)論解方程(2x+1)(3x—2)=0 嗎?3、 運(yùn)用因式分解解簡(jiǎn)單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個(gè)未知數(shù)的方程的解也叫做根,當(dāng)方程的根多于一個(gè)時(shí),常用帶足標(biāo)的字母表示,比如:x1 ,x2
等練習(xí):課本P162課內(nèi)練習(xí)2
做一做!對(duì)于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時(shí)除以(x+2)嗎?為什么?
教師總結(jié):運(yùn)用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個(gè)一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項(xiàng),把方程的右邊化為零以后再進(jìn)行解方程;遇到方程兩邊有公因式,同樣需要先進(jìn)行移項(xiàng)使右邊化為零,切忌兩邊同時(shí)除以公因式!4、知識(shí)延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知識(shí),總結(jié)收獲因式分解的兩種應(yīng)用:
(1)運(yùn)用因式分解進(jìn)行多項(xiàng)式除法
(2)運(yùn)用因式分解解簡(jiǎn)單的方程
(四)布置課后作業(yè)
作業(yè)本6、42、課本P163作業(yè)題(選做)
教學(xué)設(shè)計(jì)思想:
本小節(jié)依次介紹了平方差公式和完全平方公式,并結(jié)合公式講授如何運(yùn)用公式進(jìn)行多項(xiàng)式的因式分解。第一課時(shí)的內(nèi)容是用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解,首先提出新問(wèn)題:x2-4與y2-25怎樣進(jìn)行因式分解,讓學(xué)生自主探索,通過(guò)整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學(xué)生的逆向思維和推理能力,然后讓學(xué)生獨(dú)立去做例題、練習(xí)中的題目,并對(duì)結(jié)果通過(guò)展示、解釋、相互點(diǎn)評(píng),達(dá)到能較好的運(yùn)用平方差公式進(jìn)行因式分解的目的。第二課時(shí)利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問(wèn)題,從中培養(yǎng)學(xué)生的思維品質(zhì)。
教學(xué)目標(biāo)
知識(shí)與技能:
會(huì)用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解;
會(huì)用完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;
能夠綜合運(yùn)用提公因式法、平方差公式、完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;
提高全面地觀察問(wèn)題、分析問(wèn)題和逆向思維的能力。
過(guò)程與方法:
經(jīng)歷用公式法分解因式的探索過(guò)程,進(jìn)一步體會(huì)這兩個(gè)公式在因式分解和整式乘法中的不同方向,加深對(duì)整式乘法和因式分解這兩個(gè)相反變形的認(rèn)識(shí),體會(huì)從正逆兩方面認(rèn)識(shí)和研究事物的方法。
情感態(tài)度價(jià)值觀:
通過(guò)學(xué)習(xí)進(jìn)一步理解數(shù)學(xué)知識(shí)間有著密切的聯(lián)系。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):①運(yùn)用平方差公式分解因式;②運(yùn)用完全平方式分解因式。
難點(diǎn):①靈活運(yùn)用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運(yùn)用完全平方公式分解因式
關(guān)鍵:把握住因式分解的基本思路,觀察多項(xiàng)式的特征,靈活地運(yùn)用換元和劃歸思想。
教學(xué)目標(biāo)
教學(xué)知識(shí)點(diǎn)
使學(xué)生了解因式分解的好處,明白它與整式乘法在整式變形過(guò)程中的相反關(guān)系。
潛力訓(xùn)練要求。
透過(guò)觀察,發(fā)現(xiàn)分解因式與整式乘法的關(guān)系,培養(yǎng)學(xué)生觀察潛力和語(yǔ)言概括潛力。
情感與價(jià)值觀要求。
透過(guò)觀察,推導(dǎo)分解因式與整式乘法的關(guān)系,讓學(xué)生了解事物間的因果聯(lián)系。
教學(xué)重點(diǎn)
1、理解因式分解的好處。
2、識(shí)別分解因式與整式乘法的關(guān)系。
教學(xué)難點(diǎn)透過(guò)觀察,歸納分解因式與整式乘法的關(guān)系。
教學(xué)方法觀察討論法
教學(xué)過(guò)程
Ⅰ、創(chuàng)設(shè)問(wèn)題情境,引入新課
導(dǎo)入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)
Ⅱ、講授新課
1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。
993-99=99×98×100
2、議一議
你能嘗試把a(bǔ)3-a化成n個(gè)整式的乘積的形式嗎?與同伴交流。
3、做一做
(1)計(jì)算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;
③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________
(2)根據(jù)上面的算式填空:
①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();
④y2-6y+9=()2。⑤a3-a=()()。
定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式分解因式。
4。想一想
由a(a+1)(a-1)得到a3-a的變形是什么運(yùn)算?由a3-a得到a(a+1)(a-1)的變形與這種運(yùn)算有什么不同?你還能舉一些類似的例子加以說(shuō)明嗎?
下面我們一齊來(lái)總結(jié)一下。
如:m(a+b+c)=ma+mb+mc(1)
ma+mb+mc=m(a+b+c)(2)
5、整式乘法與分解因式的.聯(lián)系和區(qū)別
ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。
6。例題下列各式從左到右的變形,哪些是因式分解?
(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);
(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。
Ⅲ、課堂練習(xí)
P40隨堂練習(xí)
Ⅳ、課時(shí)小結(jié)
本節(jié)課學(xué)習(xí)了因式分解的好處,即把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式;還學(xué)習(xí)了整式乘法與分解因式的關(guān)系是相反方向的變形。
上午好!我是最后一號(hào),非常不好意思,因?yàn)槲易尨蠹彝纯喽鋵?shí)的等到現(xiàn)在。我今天說(shuō)課的課題是因式分解(板書課題§4.1因式分解)。我將主要從教材分析,教法分析,學(xué)法指導(dǎo),教學(xué)過(guò)程及補(bǔ)充說(shuō)明等五個(gè)方面來(lái)具體闡述這節(jié)課。下面開始我的說(shuō)課。
一、教材分析
(一)教材的地位與作用
本節(jié)課是初中數(shù)學(xué)人教北師大版八年級(jí)下冊(cè)第四章第一節(jié)的內(nèi)容。在此之前,學(xué)生已經(jīng)學(xué)習(xí)了整式乘法的相關(guān)知識(shí),這為過(guò)渡到本節(jié)的學(xué)習(xí)起了鋪墊作用。同時(shí)本節(jié)課也為后續(xù)知識(shí)一元二次方程求解方法的學(xué)習(xí)奠定一定的作用,因此在教材中本節(jié)課起著承上啟下的過(guò)渡作用,而且本節(jié)課鑲嵌著深刻的數(shù)形結(jié)合思想、類比思想,有利于學(xué)生思維的深化。
(二)教學(xué)目標(biāo)
根據(jù)以上對(duì)教材的認(rèn)識(shí)分析和學(xué)生的實(shí)際情況,結(jié)合數(shù)學(xué)新課標(biāo),我制定如下教學(xué)目標(biāo):
1、知識(shí)與技能
(1)了解因式分解的意義,理解因式分解的概念。
(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系。
(3)培養(yǎng)和提高學(xué)生分析、解決問(wèn)題的能力
2、過(guò)程與方法
通過(guò)因式分解的學(xué)習(xí),讓學(xué)生經(jīng)歷因式分解概念的探索過(guò)程,感知、了解數(shù)學(xué)概念形成的方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。
3、情感態(tài)度與價(jià)值觀
鼓勵(lì)學(xué)生積極主動(dòng)的參與教學(xué)的整個(gè)過(guò)程,激發(fā)其求知的欲望;讓學(xué)生體會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想;領(lǐng)會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于質(zhì)疑的優(yōu)良品質(zhì)。
(三)教學(xué)重點(diǎn)、難點(diǎn)
根據(jù)新課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我將本節(jié)課的重難點(diǎn)確立為因式分解的概念,通過(guò)多層次展示,多角度分析,多方面練習(xí),以達(dá)到突出重點(diǎn),突破難點(diǎn)的目的。
二、教法分析
數(shù)學(xué)是思維的體操,是一門以培養(yǎng)人的思維,發(fā)展人的思維為目的的重要學(xué)科,因此,在教學(xué)中,教師不僅要使學(xué)生“知其然”,更要使學(xué)生“知其所以然”。
我們?cè)趲熒葹橹黧w,又為客體的原則下,展現(xiàn)獲取知識(shí)和方法的思維過(guò)程?;诒竟?jié)課的特點(diǎn)和學(xué)生的實(shí)際情況,主要采用啟發(fā)誘導(dǎo)、自主學(xué)習(xí)、合作探疑相結(jié)合等教學(xué)方法。
三、學(xué)法指導(dǎo)
現(xiàn)代的文盲不再是不識(shí)字的人,而是不會(huì)學(xué)習(xí)的人。數(shù)學(xué)課重在讓學(xué)生逐漸學(xué)會(huì)自主學(xué)習(xí),養(yǎng)成良好的學(xué)習(xí)習(xí)慣和規(guī)范的數(shù)學(xué)思維方式、方法?;诖耍趯W(xué)生的學(xué)習(xí)過(guò)程中,教師要對(duì)學(xué)生順勢(shì)啟發(fā)、恰當(dāng)點(diǎn)撥,以達(dá)到優(yōu)化學(xué)生學(xué)習(xí)結(jié)構(gòu)的目的。
結(jié)合教材、教法和學(xué)情,本節(jié)課借助多媒體課件、活頁(yè)學(xué)案等輔助手段進(jìn)行,以達(dá)到增加課堂直觀效果,打造高效課堂的目的。
四、教學(xué)過(guò)程
結(jié)合《數(shù)學(xué)新課標(biāo)》和學(xué)生已有的知識(shí)及生活經(jīng)驗(yàn),根據(jù)新課改的理念,本節(jié)課我主要設(shè)計(jì)以下幾個(gè)教學(xué)環(huán)節(jié):①溫故知新(3分鐘)②探究新知(25分鐘)③基礎(chǔ)過(guò)關(guān)(7分鐘)④課堂小結(jié)(3分鐘)⑤課堂自測(cè)(5分鐘)⑥課堂質(zhì)疑(2分鐘)
接著,我再細(xì)說(shuō)一下這幾個(gè)環(huán)節(jié)
(一)溫故知新
給出以下兩個(gè)搶答題
這一環(huán)節(jié)的目的既達(dá)到溫習(xí)乘法分配律,又起到預(yù)熱學(xué)生思維的目的,以保證學(xué)生盡快進(jìn)入課堂學(xué)習(xí)的角色。
(二)探究新知
1、因式分解的概念
(1)想一想
能被 整除嗎?還能被哪些數(shù)整除?你是怎么得出來(lái)的?
(2)議一議
你能嘗試把a(bǔ)3-a化成幾個(gè)整式的乘積的形式嗎?與同伴交流.
(3)拼一拼
分別寫出箭頭兩邊的面積
_____________________________=___________________
_________________________=___________________
嘗試歸納:因式分解的定義
對(duì)于因式分解概念的歸納這一重難點(diǎn),此環(huán)節(jié)設(shè)計(jì)三個(gè)活動(dòng),活動(dòng)1想一想,目的是讓學(xué)生從數(shù)的角度直觀的感知因式分解,同時(shí)體會(huì)學(xué)習(xí)因式分解的意義(可以達(dá)到簡(jiǎn)化運(yùn)算的目的);活動(dòng)2議一議,目的是讓學(xué)生用類比的思想由數(shù)分解過(guò)渡到式的分解,進(jìn)一步深化學(xué)生的思維;活動(dòng)3拼一拼,目的是讓學(xué)生從圖形的角度理解因式分解的含義,滲透數(shù)形結(jié)合思想。這三個(gè)活動(dòng)從數(shù)、式、形三個(gè)角度逐層深入的闡釋了因式分解的概念,破解了學(xué)生難以理解因式分解的節(jié)點(diǎn),同時(shí)活動(dòng)3的動(dòng)態(tài)演示活躍了課堂氣氛,有效的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性。
2、整式乘法與因式分解的關(guān)系
根據(jù)左邊的算式進(jìn)行因式分解fen分解
(1)填一填
計(jì)算下列各式
( )( )
( )( )
( )( )
( )( )
(2)想一想
因式分解與整式乘法有什么關(guān)系?舉例說(shuō)明
對(duì)于整式乘法與因式分解的關(guān)系,此環(huán)節(jié)設(shè)計(jì)兩個(gè)小活動(dòng),活動(dòng)1兩列左右交換的算式有利于對(duì)比學(xué)生觀察,活動(dòng)2舉例說(shuō)明,通過(guò)學(xué)生舉例及對(duì)所舉例子的解釋,觀察學(xué)生對(duì)二者關(guān)系的理解程度,捕捉學(xué)生知識(shí)理解的盲點(diǎn),隨時(shí)調(diào)節(jié)課堂的節(jié)奏和進(jìn)度。
(三)基礎(chǔ)過(guò)關(guān)
至此本節(jié)課的兩個(gè)知識(shí)點(diǎn)已進(jìn)行完畢,為了達(dá)到及時(shí)反饋的目的,學(xué)生在學(xué)案上完成基礎(chǔ)過(guò)關(guān)部分的三道試題。完成后有學(xué)生在投影儀上展示、講解給其他學(xué)生,學(xué)生站在自己的角度講授給學(xué)生,可能他們會(huì)更好理解一些,同時(shí)教師若發(fā)現(xiàn)其他學(xué)生解決不了的問(wèn)題,給予及時(shí)糾正。
1、連一連
2、下列由左邊到右邊的變形,哪些是因式分解?
3、
(四)課堂小結(jié)
教師拋出問(wèn)題:本節(jié)課學(xué)到了哪些知識(shí)?運(yùn)用了哪些證明方法?滲透了哪些數(shù)學(xué)思想? 學(xué)生總結(jié),教師補(bǔ)充
知識(shí)性內(nèi)容的小結(jié),可以把課堂教學(xué)傳授的知識(shí)盡快轉(zhuǎn)化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可以使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并逐步實(shí)現(xiàn)培養(yǎng)學(xué)生良好個(gè)性品質(zhì)的目標(biāo)。
(五)課堂自測(cè)
活頁(yè)形式,限時(shí)完成
此環(huán)節(jié)學(xué)生完成后,由學(xué)生展示講解,其他學(xué)生相互交換批改,在為對(duì)方糾錯(cuò)的過(guò)程中也是對(duì)自己的一種反思。認(rèn)識(shí)到錯(cuò)誤的癥結(jié)所在,有助于培養(yǎng)學(xué)生思維的深刻性和批判性;教師則是對(duì)普遍存在的問(wèn)題集中處理,集體指導(dǎo)。
(六)質(zhì)疑碰撞
朱熹說(shuō):“小疑則小進(jìn),大疑則大進(jìn),不疑則不進(jìn)。”課堂上最后給學(xué)生留2分鐘的質(zhì)疑時(shí)間,能讓學(xué)生的思維深化,有利于培養(yǎng)學(xué)生的創(chuàng)新精神。
(七)布置作業(yè)
分為必做題和選做題,活頁(yè)形式,多個(gè)層次,自由選作
A 基礎(chǔ)強(qiáng)化性題目
B鞏固提高性題目
C拓展延伸性題目或者實(shí)踐性、開放性題目
針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既能使學(xué)生掌握基礎(chǔ)知識(shí),又能使學(xué)有余力的學(xué)生有所提高,設(shè)計(jì)不同層次的作業(yè)形式以滿足不同水平學(xué)生的需求,讓學(xué)生體驗(yàn)不同層次的成功感,從而到達(dá)“拔尖”和“減負(fù)”的目的。
(八)板書設(shè)計(jì)
§4.1因式分解
一、概念 二、關(guān)系
1、(數(shù)) 1、因式分解與整式乘法
2、a3-a (式) 互逆
3、拼圖 (形) 2、舉例說(shuō)明
最后,我來(lái)補(bǔ)充說(shuō)明一點(diǎn)
五、補(bǔ)充說(shuō)明
以鮮活生命為載體的課堂是靈動(dòng)的,它隨時(shí)隨處都有可能迸發(fā)出意想不到的精彩,所以無(wú)論我們用多么精心的預(yù)設(shè)都無(wú)法取代課堂充滿靈性的生成,因此我們要課下精心備課,課上隨時(shí)調(diào)控,捕捉孩子精彩的思維火花,升華我們的課堂,豐盈我們自己和孩子們的心靈。
以上是我說(shuō)課的全部?jī)?nèi)容,最后我以赫爾巴特的名言結(jié)束我的說(shuō)課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。
說(shuō)課完畢,各位評(píng)委辛苦了,謝謝!
感謝您閱讀“幼兒教師教育網(wǎng)”的《因式分解課件教案合集》一文,希望能解決您找不到幼兒園教案時(shí)遇到的問(wèn)題和疑惑,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了因式分解課件教案專題,希望您能喜歡!
相關(guān)推薦
經(jīng)驗(yàn)告訴我們,成功是留給有準(zhǔn)備的人。優(yōu)質(zhì)課堂,就是幼兒園的老師在講學(xué)生在答,講的知識(shí)都能被學(xué)生吸收,為了提升學(xué)生的學(xué)習(xí)效率,準(zhǔn)備教案是一個(gè)很好的選擇,有了教案的支持可以讓同學(xué)聽的快樂(lè),老師自己也講的輕松。那么如何寫好我們的幼兒園教案呢?下面,我們?yōu)槟阃扑]了因式分解教案推薦15篇,還請(qǐng)多多關(guān)注我們網(wǎng)站...
俗話說(shuō),磨刀不誤砍柴工。術(shù)業(yè)有專攻,教師離不開教案。教案有助于教師構(gòu)成較成熟、穩(wěn)定的教學(xué)風(fēng)格,關(guān)于好的教案要怎么樣去寫呢?請(qǐng)你閱讀我們輯為你編輯整理的《3的分解與組合大班教案》,還請(qǐng)多多關(guān)注我們網(wǎng)站!...
最新更新