數(shù)學(xué)之美讀后感。
我們?yōu)槟臏?zhǔn)備了一份“數(shù)學(xué)之美讀后感”相關(guān)資料。沒有書籍的屋子,就像沒有靈魂的軀體,閱讀作者寫的作品以后,感受到了作者的筆下生花,如櫞巨筆。此時就會有人想用文字記錄下自己的所想。歡迎閱讀,希望對你有幫助!
近來,我通過中國大學(xué)MOOC的慕課《數(shù)學(xué)建?!帆@悉一部叫《牛津通識讀本》的新出版科普系列。同時購入的有六本——《數(shù)學(xué)》《法律》《佛學(xué)概論》等。由于告知該書的慕課是數(shù)學(xué)課,我首先閱讀的是《數(shù)學(xué)》。
令我意外的是,本系列的書每本篇幅都短小精悍得讓人愉悅(英文類書系列名就叫A Very ShortIntroduction)。就這本16開大小的《數(shù)學(xué)》中,有實(shí)際內(nèi)容的只100頁左右,剩下的有數(shù)十多頁附注/答疑,與及100多頁的英文原稿(原書作者高爾斯是英國學(xué)者)。本書內(nèi)容質(zhì)量非常高,并未使『西方當(dāng)代學(xué)科科普』這個標(biāo)簽失色。再考慮到其篇幅如此短小,看來,以后為非理工科班出身的青年們推薦數(shù)學(xué)科普書,就不必只記得伊恩·斯圖爾特與馬丁·加德納了。
雖然這是數(shù)學(xué)科普,但作者可深知讀者心。西方作者所著的數(shù)學(xué)科普,一向都很能熟練地脫公式脫符號講問題。與同類書籍比較之下,本書還有個小小的特點(diǎn):其章節(jié)敘述順序,既不硬從數(shù)學(xué)史(人類認(rèn)知史)的流程,也不完全順應(yīng)個體認(rèn)知心理學(xué)(教育學(xué))的順序。開篇破題他選的議題是『數(shù)學(xué)模型』,非數(shù)學(xué)專業(yè)學(xué)生最能適應(yīng)的一種破題點(diǎn);然后第二章緊緊承接主題『模型化』,開談『抽象化』。這個過程的敘述行云流水。我感覺作者很懂怎樣說該說的、省去不必說的、跳過不能說的。
第二章《數(shù)與抽象》中,作者在引入復(fù)數(shù)時,首先不能免俗地做了其他科普書差不多的工作:-1的開平方根是復(fù)數(shù)的定義blabla;然后,他將議題轉(zhuǎn)入更接近上游本質(zhì)的、但也許常人可能也會想過的問題:形式與實(shí)在的關(guān)系。
不是說『-1的開平方根』是復(fù)數(shù)單位i嗎?但似乎有兩個數(shù)的平方等于-1啊(也即i與-i),到底哪個才是正宗的『復(fù)數(shù)單位』?如果說i是嘛,那么憑什么-i不是?給我講清楚啊——對吧?我猜,每個人在其漫長的人生中,都曾經(jīng)想問過這類問題吧:『為嘛數(shù)變量用abc、角變量用αβγ』『為嘛求導(dǎo)符用的是一個點(diǎn)』『為嘛積分符像條蛇』『為嘛積分式里有個d』諸如此類。這些問題并不無聊也不白癡,只是常人很難給出有意義的回答而已;它們中的每個往往都蘊(yùn)含著16世紀(jì)數(shù)學(xué)大師們的智慧精華。當(dāng)然,本書沒有解答所有這類奇離古怪的問題(這不是《十萬個為什么》)。在本書里,作者做的是教授課間做的那種事——隨便跟好奇的學(xué)生聊聊天,證明過程少說了個『在這個條件下』待會再補(bǔ)上。上面提到的『i與-i哪個才是復(fù)數(shù)單位』這個議題,這段簡短的討論,同時也扮演了下一章《證明》的引子這個角色。
進(jìn)度到第三章《證明》結(jié)束之后,對讀者而言,或許就只剩一個小時的閱讀時間而已了。后面的章節(jié),議題越來越抽象(空間、維度、距離、無窮等),正要抵達(dá)最有趣的部分(集合論)時,突然話鋒一轉(zhuǎn),談起了與抽象幾乎相對的另一端:計(jì)算理論與數(shù)論;然后,本書的主體竟在此突然收官??磥恚髡叨喽嗌偕龠€保持了清醒,未過度狂熱,未打算將每個有趣的命題都灌到讀者腦里。在我看來,那種『X貓X氣三千問』的大雜燴式科普其實(shí)是很不人道的。大家和我一樣都讀過一遍又一遍的七橋問題與雪花曲線,沒必要再來一次了。這些老生常談的話題,在本書里各只占了一頁的篇幅。太好了。
《數(shù)學(xué)之美》讀后感800字:
本書介紹了Google產(chǎn)品中涉及的自然語言處理、統(tǒng)計(jì)語言模型、中文分詞、信息度量、拼音輸入法、搜索引擎、網(wǎng)頁排名、密碼學(xué)等內(nèi)容背后的數(shù)學(xué)原理。讓我們看到了布爾代數(shù)、離散數(shù)學(xué)、統(tǒng)計(jì)學(xué)、矩陣計(jì)算、馬爾科夫鏈等似曾相識的內(nèi)容在實(shí)際生活中的應(yīng)用。相比于其他數(shù)學(xué)題材書籍,吳軍老師把抽象、深奧的數(shù)學(xué)方法解釋得通俗易懂,書中同時引用了諸多的歷史典故和人物介紹,給人以很多啟發(fā),也讓人由衷感嘆數(shù)學(xué)的簡潔和強(qiáng)大。
雖是數(shù)據(jù)專業(yè)畢業(yè),但是才疏學(xué)淺,無力對數(shù)學(xué)的美進(jìn)行闡述。僅就書中兩個比較喜歡的地方發(fā)表一點(diǎn)不成熟的見解,與諸位共勉。
其一,在講Google的搜素引擎反作弊時談到做事情的兩種境界“道”和“術(shù)”,術(shù)就是具體的做事方法,而道則是隱藏在問題背后的動機(jī)和本質(zhì)。在術(shù)這個層面解決問題要付出更多的努力,有點(diǎn)類似于我們常說的“頭疼醫(yī)頭,腳疼醫(yī)腳”,暫時不疼了,過幾天復(fù)發(fā)了,再去醫(yī)治,如此往復(fù),無法從根本上解決;而只有找到了致病原因,才能做到藥到病除,根本治愈。本人之前參與過行內(nèi)月終自動核對的研發(fā),月終核對初期數(shù)據(jù)的不一致性只能靠數(shù)百業(yè)務(wù)人員人工核對數(shù)據(jù)差異,然后修改數(shù)據(jù),每月1日都要加班加點(diǎn),工作量很大,這是從術(shù)上解決問題。后來找到了產(chǎn)生差異的原因是會計(jì)核算時的利息調(diào)整造成的,把這些數(shù)據(jù)接過來進(jìn)行相應(yīng)沖減后差異就消失了,業(yè)務(wù)人員也不用來加班了,這才是從道上解決問題。
其二,是在做中文網(wǎng)頁排名時提到的從業(yè)界成功的秘訣之一:“先幫助用戶解決80%的問題,再慢慢解決剩下的20%的問題。許多時候做事失敗,不是因?yàn)槿瞬粔騼?yōu)秀,而是做事的方法不對。一開始追求大而全的解決方案,之后長時間不能完成,最后不了了之”。我們在做項(xiàng)目時也是一樣,業(yè)務(wù)有時要的功能非常急,可能有些功能也實(shí)現(xiàn)不了(比如系統(tǒng)響應(yīng)時間長、查詢明細(xì)不能支持省行等)。這時我們就要將焦點(diǎn)關(guān)注在那些可以實(shí)現(xiàn)的80%的功能上,哪怕剛剛上線的系統(tǒng)界面丑點(diǎn),操作復(fù)雜點(diǎn),反應(yīng)速度慢點(diǎn),但是至少業(yè)務(wù)有可用的系統(tǒng),剩下時間再去優(yōu)化那剩下的20%。這樣可以幫助我行搶占先機(jī),在與同行業(yè)的競爭中取得主動。如果等待我們把所有的細(xì)節(jié)都搞清楚再動手開發(fā),力求完美,那么很可能系統(tǒng)能夠上線的時候業(yè)務(wù)已經(jīng)不需要了。
數(shù)學(xué)之美,也就是簡單之美。希望大家能夠喜歡數(shù)學(xué),喜歡數(shù)學(xué)之美。
在網(wǎng)上看到有人推薦吳軍博士的《數(shù)學(xué)之美》,盡管我從事社會科學(xué)研究,但對數(shù)學(xué)的推崇一直如此,所以買來一讀,我的真切體驗(yàn)正如吳軍博士在書的后記中所說,把自己“境界提升了一個層次”。
那么,對我而言,到底提升了什么境界呢?
首要的肯定是思想境界。在未讀這本書之前,我知道對于這個世界的事件形成的信息集合,人類只有兩種方式可以表達(dá),一個是數(shù)字,一個是語言。整個實(shí)數(shù)的集合是無窮個,而且每個數(shù)字都是唯一的;整個世界中的事件也是無窮個的,而且每個事件也時獨(dú)一無二的,這樣數(shù)學(xué)中的數(shù)字集合與世界中的事件集合就構(gòu)成一個一一對應(yīng)的關(guān)系,所以研究數(shù)字之間的關(guān)系,實(shí)際上就是在研究世界中事件之間的關(guān)系。語言中的概念和世界中的事件之間也是可以構(gòu)成一個對應(yīng)關(guān)系的,但問題是,語言中概念的集合是有限的,所以它和數(shù)字集合的對應(yīng)顯然只能是部分對應(yīng)。
計(jì)算機(jī)科學(xué)的發(fā)展,人類需要把語言處理成數(shù)字,因?yàn)橛?jì)算機(jī)只能識別數(shù)字信號,所以“語言的數(shù)字化”成為計(jì)算機(jī)產(chǎn)生以來發(fā)展最快、而且最有創(chuàng)新性的領(lǐng)域,而許多華人科學(xué)家成為了這個領(lǐng)域的頂尖專家,如李開復(fù),吳軍博士是卓越的科學(xué)家之一。至此我才感到,在計(jì)算機(jī)主導(dǎo)的世界中,信息化就是數(shù)字化,而最難的數(shù)字化、也是最有成就的數(shù)字化,就是對人類自然語言的數(shù)字化,因?yàn)槿祟惖男畔缀?00%是用語言承載、傳播的,計(jì)算機(jī)要與人對話,變成智能化的機(jī)器,首先要解決的就是語言的數(shù)字化問題。但我們在電腦上自如地輸入文字時、或者拿著手機(jī)通話時,我們跟本沒有意識到,那些卓越的語言科學(xué)家,早已經(jīng)把我們的語言,轉(zhuǎn)化成數(shù)字信號,通過輸入、處理、解碼的方式,讓我們無障礙地聯(lián)絡(luò)、工作。
我似乎感到,語言與數(shù)字的關(guān)系,就是人與自然關(guān)系的接口。套用古希臘畢達(dá)哥拉斯學(xué)派的觀點(diǎn),加上我的理解,即是,數(shù)是萬物的本原,語言是人的本原!
吳軍博士似乎也在提升我對方法的認(rèn)識境界??茖W(xué)研究的思考方式,習(xí)慣遵循本質(zhì)、規(guī)律、連續(xù)性思維,在語言學(xué)研究的早期,人類為了讓計(jì)算機(jī)識別語言,采用建立語言規(guī)則和語言規(guī)則數(shù)據(jù)庫的辦法,但最終以失敗告終(20世紀(jì)50-70年代),70年代后科學(xué)家采用了語言統(tǒng)計(jì)模型,研究取得了突飛猛進(jìn)。語言統(tǒng)計(jì)模型的勝利,再一次證明了宇宙量子模型的信念,世界是不連續(xù)的隨機(jī)性的粒子構(gòu)成,人類數(shù)千年文明進(jìn)化出來的語言系統(tǒng),就是動態(tài)的隨機(jī)概率事件。其二,物理思維再也難逃牛頓的經(jīng)典本質(zhì)思維方法,即找尋到百分之百確定性的規(guī)律,而信息論思維是研究如何把握不確定性現(xiàn)象,利用概率統(tǒng)計(jì)是不二法門。其三,語言本質(zhì)上就是信息傳播,只有從通信模型視角才能真正理解計(jì)算機(jī)的功能,對語言的編碼、處理、傳輸、解碼是計(jì)算機(jī)的強(qiáng)項(xiàng),計(jì)算機(jī)是永遠(yuǎn)不可能理解語言的意思的。
在《數(shù)學(xué)之美》中,吳軍博士對他的老師、師兄弟、同事的經(jīng)歷、掌故進(jìn)行了敘述,讓我們了解到這些世界一流的學(xué)科家、技術(shù)精英們的為人處世品質(zhì)、鮮明個性、科學(xué)素養(yǎng)及其管理風(fēng)格。例如賈里尼克對博士生的嚴(yán)酷淘汰,馬庫斯對學(xué)生的寬宏大度,但我感到他們有一樣?xùn)|西是共同的,就是對科學(xué)創(chuàng)造、頂尖人才的識別和器重,甚至是無條件的包容。如此為人的境界才是根本,因?yàn)閭ゴ蟮目茖W(xué)創(chuàng)造畢竟是人做出來的,只有崇高的人文精神之下才能造就頂尖的人才、一流的科學(xué)和技術(shù)。
觀國內(nèi)的學(xué)說界,官風(fēng)盛行、腐敗當(dāng)?shù)?、人情充斥,與這些一流學(xué)說群對科學(xué)創(chuàng)造的賞識、對個性人才的包容,對科學(xué)探索的熱誠,可謂相去甚遠(yuǎn)。
看來,我們只能寄希望于年輕一代,但愿吳博士的《數(shù)學(xué)之美》,能讓我們的學(xué)子們,初步體驗(yàn)到科學(xué)精英們卓越的才智與情懷。
在語音識別、翻譯,還有密碼學(xué)領(lǐng)域,有著許多基于概率統(tǒng)計(jì)的模型和思想。當(dāng)然,貝葉斯公式是基礎(chǔ),應(yīng)用到隱含馬爾科夫鏈模型,神經(jīng)網(wǎng)絡(luò)模型。
在搜索中,一些相關(guān)性的計(jì)算,無不用到了概率的知識。在新聞分類中,用到了一些有關(guān)矩陣特征值、相似對角化的知識。當(dāng)然,在圖像處理方面,矩陣變換可謂是無處不在。另外,在識別方面,有一些通信模型,涉及到了信道、誤碼率、信息熵。
最近剛開學(xué)也沒什么事,所以就想隨便找?guī)妆緯匆幌?,但別是那種太艱深晦澀的書。8月份一直到現(xiàn)在,吳軍寫的這本12年5月出版的《數(shù)學(xué)之美》一直盤踞京東、亞馬遜等各大網(wǎng)上商城科技類圖書的榜首,當(dāng)然,還有早些時候出版的《浪潮之巔》也排在很靠前的位置。心想市場的力量應(yīng)該能幫我挑出好書吧,于是就從圖書館借了一本來,一直到今天晚上把它給看完了。
因此想寫一點(diǎn)東西來總結(jié)、反思一下,反正剛開完班會也沒什么事干。
寫在前面的建議:如果你不討厭數(shù)學(xué)的話,強(qiáng)烈推薦這本書,網(wǎng)上也可以下到電子版,不過閱讀感覺上還是很不一樣的。
廢話就不多說了,《數(shù)學(xué)之美》其實(shí)是一本科普類的讀物,所面向的是接受過普通高等教育的人,完全不需要在特定領(lǐng)域有很深的造詣就可以看懂,大概懂一點(diǎn)線性代數(shù)、概率統(tǒng)計(jì)、組合數(shù)學(xué)、信息論、計(jì)算機(jī)算法、模式識別(雖然列舉了這么多,其實(shí)有些不懂也沒關(guān)系……),所以尤其適合信科的人看。內(nèi)容大部分是和人工智能、計(jì)算機(jī)相關(guān)的,這并非我所學(xué)的專業(yè),但作者比較擅長將看似復(fù)雜的原理用簡明的語言表達(dá)出來,所以可讀性還是很好的。
吳軍是清華大學(xué)畢業(yè)的,之前任職于Google,后來到了騰訊,這些文章都是發(fā)表在Google黑板報上的,后來經(jīng)過了重寫,所以網(wǎng)上下載的和書本內(nèi)容有所差異。由于吳軍本人是研究自然語言處理和語音識別的,所以統(tǒng)計(jì)語言模型的東西可能會多一點(diǎn),不過我覺得這絲毫不妨礙全書數(shù)學(xué)之美的展現(xiàn)……感覺收獲還是挺多的,知識上的有一些,但更多還是思維方式上的。作者舉了很多例子試圖讓人明白很多看似復(fù)雜的高科技背后,基本原理其實(shí)是出乎意料簡單的(當(dāng)然,必須承認(rèn)第一個想到這些方法的人還是非常了不起的……)。比如高準(zhǔn)確率的機(jī)器翻譯,看上去好像是計(jì)算機(jī)能夠理解各國語言,隱藏在背后的卻是很多具有大學(xué)理科學(xué)歷的人都非常清楚的統(tǒng)計(jì)模型和概率模型;再比如拼音輸入法的數(shù)學(xué)原理,早期的研究主要集中在縮短平均編碼長度,比如曾經(jīng)流行一時的五筆輸入法,而現(xiàn)今真正實(shí)用的輸入法卻是有很多信息冗余、編碼長度比較長的拼音輸入法,作者從信息論和市場的角度做了簡單的闡述;又比如新聞的自動分類,許多非IT領(lǐng)域的人可能會認(rèn)為計(jì)算機(jī)可以讀懂新聞并進(jìn)行分類,而實(shí)際上只是特征向量的抽取、空間中向量夾角的計(jì)算,非常非常簡單,但凡學(xué)過一點(diǎn)線性代數(shù)的人絕對是一看就懂的……當(dāng)然,完美的實(shí)現(xiàn)還需要考慮很多細(xì)節(jié)和現(xiàn)實(shí)的情況,但這并不是這本書所關(guān)注的地方,數(shù)學(xué)之美在于其簡潔而不是繁瑣。
除了對于具體信息技術(shù)的剖析之外,作者還花了很大篇幅來講一些杰出人士的成長過程,特別是把這些人的成長經(jīng)歷和中國學(xué)生的成長經(jīng)歷作對比。雖然作者并沒有明說,但字里行間多少流露出對于中國高等教育以及很多中國企業(yè)的批評,一是教育的功利性,缺乏寬松的獨(dú)立思考的環(huán)境,即使學(xué)了一堆理論也難有用武之地,自然也就缺乏創(chuàng)新性的成果;二是中國企業(yè)的短視,大部分都不舍得在新框架開發(fā)上投資,而是坐享學(xué)術(shù)界和國外企業(yè)的研究成果。
總結(jié)一下呢,能夠從更宏觀的角度來思考信息世界背后的數(shù)學(xué)引擎的運(yùn)行原理,讓人明白看似很高級、復(fù)雜的東西背后其實(shí)并不如我們所想象的那樣復(fù)雜,而我們所學(xué)的“枯燥”的數(shù)學(xué)真的可以“四兩撥千斤”,改變億萬人的生活。
數(shù)學(xué)用在模型上而不是現(xiàn)實(shí)世界中,需要抽象思考出模型,即數(shù)學(xué)對象是其所做。數(shù)系擴(kuò)充中,復(fù)數(shù)i并沒有比無理數(shù)根號2更特殊的地方,因?yàn)樗鼈冏鳛槌橄蟮臄?shù)學(xué)構(gòu)造,如果充分自然,則必能作為模型找到它們的用途。實(shí)際上正是如此。
數(shù)學(xué)中有個根本性的重要事實(shí):數(shù)學(xué)論證中的每一步都可以不斷地分解成更小更清晰有據(jù)的子步驟,但是這樣的過程最終會終止。原則上,最終會得到一條非常長的論證,它以普遍接受的公理開始,僅通過最基本的邏輯原則一步步推進(jìn),最終得到想要求證的結(jié)論。所以,任何關(guān)于數(shù)學(xué)證明有效性的爭論總是能夠解決的。爭論在原則上必然能夠解決這一事實(shí)使數(shù)學(xué)作為一個學(xué)科是獨(dú)一無二的。在這里,公理系統(tǒng)的主要問題不是真實(shí)性,而是自洽性和有用性,即數(shù)學(xué)證明就是由特定前提能夠得出特定結(jié)論,而不考慮該前提是否正確。
我不清楚這一“根本性的重要事實(shí)”在現(xiàn)實(shí)中的使用范圍有多大,但由此可以聊一點(diǎn)別的問題?,F(xiàn)實(shí)中,如果甲對事情有A觀點(diǎn)(或說價值觀),乙有B觀點(diǎn),并為此爭執(zhí)。有下面幾種情況:
1、在上述的范圍之外,即沒有定論。
2、有定論,但是雙方都沒有給出足夠的證據(jù)證明和反駁。
3、有定論,一方給出了足夠的證據(jù)(或者反駁理由),因?yàn)楸磉_(dá)能力導(dǎo)致表述不清晰而沒有說服對方。
4、有定論,一方給出了足夠的證據(jù)(或者反駁理由),因?yàn)閷Ψ嚼斫獠粔蚧蚶斫馄顚?dǎo)致沒有被說服。第234條與這幾項(xiàng)有關(guān):知識量,表達(dá)能力,理解能力,對外界的認(rèn)知和自我認(rèn)知。其中語言本身的局限性會一定程度上影響表達(dá)和理解,認(rèn)知能力是一項(xiàng)綜合的要求很高的能力。“評論”這件事就是個很合適的例子。如果說創(chuàng)造更需要的是才氣,那么評論更需要的就是能力。但是,無論雙方是否知道有無定論,很多情況下需要陳述不少或很多證據(jù)或反駁理由,由第234條可知人與人交流的效率很低,并且可能伴隨一些沖突。若考慮到一些人的利益因素等,交流會更復(fù)雜。
1,知識要學(xué)以致用。上學(xué)的時候?qū)W習(xí)概率論、運(yùn)籌學(xué)這些學(xué)科,只是單純的認(rèn)為是數(shù)學(xué)知識。讀過這本書才發(fā)現(xiàn),原來我們?nèi)粘S玫降乃阉?、語音識別、文章分類這些功能的背后,都是數(shù)學(xué)知識在起作用。
如果讀書的時候就知道這些,學(xué)習(xí)會更有目的性。結(jié)合應(yīng)用情況,也能更好的理解這些概念。
2,一項(xiàng)技術(shù)如果注定要被淘汰,那么從現(xiàn)在就放棄它。從統(tǒng)計(jì)學(xué)的角度解決機(jī)器翻譯的方法,明顯優(yōu)于從語法結(jié)構(gòu)角度起手的方法。但是還是有很多學(xué)者鉆研后者,最后白白浪費(fèi)了自己多年的時間。
一個公司更應(yīng)該如此。后面讀《浪潮之巔》看到雅虎為了避免文章分類出錯,竟然采用人工分類的方法??吹降臅r候,很難想象這是一家互聯(lián)網(wǎng)公司能做出來的事情。
3,要學(xué)會發(fā)現(xiàn)問題的本質(zhì),從根源上解決問題。利用搜索引擎的漏洞,做所謂的SEO優(yōu)化,方法千奇百怪。如果只去解決具體問題,那么就會讓自己處于被動狀態(tài)。發(fā)現(xiàn)作弊方法的特征,斬草除根,效率會提升很多。
我第一次看到這本書是在兩三年前,當(dāng)時看的是電子書,雖然沒太仔細(xì)看,但是第一次近距離了解到這些互聯(lián)網(wǎng)應(yīng)用背后的數(shù)學(xué)原理。
前段時間,我在同學(xué)的桌上看到了《數(shù)學(xué)之美》的紙質(zhì)書,就向他借來讀。雖說“書非借不能讀也”,但實(shí)際上借了書也沒能好好讀,斷斷續(xù)續(xù)讀了有一個月才讀完。
由于工作背景的緣故,吳軍博士的這本書主要內(nèi)容集中在語言識別和搜索領(lǐng)域,但這絲毫不妨礙它確實(shí)反映了很多共同的道理。我總結(jié)了幾點(diǎn)供大家探討。
1. 簡單就是美
歐拉公式,最美的數(shù)據(jù)公式之一。
雖然在大家的眼里,數(shù)學(xué)是一門深奧的學(xué)科,但是很多數(shù)學(xué)規(guī)律卻能用非常簡單的公式表示出來。我想“簡單卻非常有用”或許就是數(shù)學(xué)之美的內(nèi)涵吧。
書中作者給了很多“簡單卻非常有用”的例子,比如簡單的布爾代數(shù)就是搜索引擎的數(shù)學(xué)基礎(chǔ);比如助Google一舉逆襲成為搜索老大pagerank算法就是矩陣乘法迭代結(jié)合TF-IDF公式;地圖導(dǎo)航搜索就是簡單的動態(tài)規(guī)劃;統(tǒng)計(jì)語言模型可以輕松解決看似難度、復(fù)雜度超高機(jī)器翻譯、語音識別。
數(shù)學(xué)的精彩之處就在于簡單的模型可以干大事。從本質(zhì)上講,數(shù)學(xué)的思維方法就是抽象與簡化。簡單的模型怎么來?靠的是先抽象,后簡化。對于復(fù)雜的問題,往往可以通過抽象,然后用數(shù)學(xué)模型來描述它。選擇了合理的模型就成功了一半。但是有了模型,往往模型看著簡單,但求解比較困難。這就需要合理假設(shè)繼續(xù)簡化,或者說通過增加合理的假設(shè)條件來簡化計(jì)算。以書上提到的馬爾科夫鏈為例,雖然公式的求解非常困難,但是一旦加上適當(dāng)?shù)募僭O(shè),問題就一下子簡化了非常多。
所以,針對紛繁蕪雜的現(xiàn)實(shí)情況,我們一定要能時刻準(zhǔn)備著把復(fù)雜問題簡單化,一定要做到大膽合理假設(shè),盡可能的簡化問題,抓住其主要矛盾,先用很小的代價解決大部分的問題,剩下的部分再分步解決。
2. 透過現(xiàn)象看本質(zhì)
作者說到,技術(shù)分為術(shù)和道兩種,具體的做事方法是術(shù),做事的原理和原則是道。技術(shù)容易學(xué),但也容易落伍,所以追求術(shù)的人一輩子工作很辛苦,只有掌握了道的本質(zhì)和精髓才能永遠(yuǎn)游刃有余。真正做好一件事沒有捷徑,需要一萬小時的專業(yè)訓(xùn)練和努力。
道是什么?道實(shí)際上就是方向,就是判斷。
我想有些領(lǐng)導(dǎo)之所以成為優(yōu)秀的領(lǐng)導(dǎo),是因?yàn)樗麄冋莆樟说溃炊鴮唧w的術(shù)不那么關(guān)注。
舉個書上的兩個例子,都是關(guān)于搜索的:一個例子是搜索的本質(zhì)是什么?自動下載盡可能多的網(wǎng)頁;建立快速有效的索引;根據(jù)相關(guān)性對網(wǎng)頁進(jìn)行公平準(zhǔn)確的排序。另一個例子是搜索引擎作弊的本質(zhì)是什么?是在網(wǎng)頁排名信號中加入了噪聲,因此反作弊的關(guān)鍵是去除噪聲。
所以,我們在工作的時候,要善于理解事物的原理與本質(zhì)。要先回答是什么、為什么?最后才是怎么做。再比如,在學(xué)習(xí)某個軟件或某項(xiàng)技術(shù)時,就需要先掌握它的工作原理與工作機(jī)制,以便于我們判斷其適用的場景和不適用的場景,而不是先去熟悉怎么用它。
3. 循序漸進(jìn)、逐步演化
書上對自然語言處理著墨很多。最初的自然語言處理是基于規(guī)則的句法分析,但是一段時間過后,人們發(fā)現(xiàn)句法分析的準(zhǔn)確率很難提升。正當(dāng)句法分析派走投無路的時候,統(tǒng)計(jì)語言模型出現(xiàn)了,而且越走越順,很快就把句法分析派遠(yuǎn)遠(yuǎn)拋在了后面。問題就來了,那為什么最開始科學(xué)家們不直接研究統(tǒng)計(jì)語言模型?答案當(dāng)然是不能,原因是時機(jī)還不成熟,因?yàn)榻y(tǒng)計(jì)語言模型所需要基于的大數(shù)據(jù)量的語言庫還沒有,大規(guī)模并行計(jì)算的能力還不夠。同樣的,統(tǒng)計(jì)語言模型就是最好的嗎?當(dāng)然是不盡然,科學(xué)家們現(xiàn)在開始研究基于深度學(xué)習(xí)的自然語言處理,相信不久的將來,語言識別、機(jī)器翻譯會有另外一個質(zhì)的飛躍。
我們做什么事情都不可能是一蹴而就,一步到位,想畢其功于一役的往往最后的結(jié)局都是失敗的。
對我們而言,不管是架構(gòu)規(guī)劃也好、系統(tǒng)建設(shè)也好、管理工作也好,更是需要找準(zhǔn)突破口,循序漸進(jìn),逐步演化。當(dāng)然,我們也不能固步自封、墨守成規(guī)。
讀完這本書有一點(diǎn)強(qiáng)烈的感受:工具一定要先進(jìn)。數(shù)學(xué)是強(qiáng)大的工具,計(jì)算機(jī)也是。這兩種工具結(jié)合在一起,造就了強(qiáng)大的google、百度、亞馬遜、阿里、京東、騰迅等公司。他們不是百年老店,但他們掌握了先進(jìn)的工具。
掌握了先進(jìn)的工具,必將獲得競爭優(yōu)勢。如果你知道哪里有一群軟件工程師,維護(hù)著更大的一群計(jì)算機(jī),那么不要猶豫,想辦法使用他們提供的服務(wù),因?yàn)檫@會給你帶來優(yōu)勢。所以我們使用Google的搜索和郵件,在亞馬遜、京東和淘寶上購物,用QQ和微博聯(lián)系朋友,使用銀行卡和網(wǎng)上銀行,利用交易終端在全球市場上進(jìn)行各種交易……
人類歷史就是一部工具的進(jìn)化史。石器、青銅、鐵器、火藥、蒸汽機(jī)、內(nèi)燃機(jī)、電報、電話、電視、計(jì)算機(jī)、衛(wèi)星、互聯(lián)網(wǎng),工具的進(jìn)步引領(lǐng)著文明的進(jìn)步。新的工具不斷淘汰老的工具,就像互聯(lián)網(wǎng)視頻點(diǎn)播正在淘汰電視、微博正在淘汰報紙、電子書正在淘汰紙質(zhì)書那樣。
但有一些古老的工具,今天仍有人在學(xué)習(xí)和使用,甚至在上面花費(fèi)許多時間。毛筆就是這樣一個例子。今天學(xué)習(xí)掌握毛筆這種“落后的”工具,還有什么意義?其實(shí)我們在使用一些“落后的”工具時,主要是在學(xué)習(xí)工具背后的思想。書法和繪畫中蘊(yùn)含的藝術(shù)審美的一般原則,經(jīng)得起具體工具變遷的考驗(yàn)。甲骨文、金文、石鼓文所包含的對空間構(gòu)圖的理解,仍然值得現(xiàn)代人學(xué)習(xí)。思想工具是比實(shí)物工具更強(qiáng)大的工具。
工具組合使用,形成更強(qiáng)大的新工具?!稊?shù)學(xué)之美》中提到的馬爾可夫鏈雖然是很強(qiáng)大的工具,但我在數(shù)學(xué)課上沒有聽老師提到過。這本書中給我印象最深的例子是余弦定理和新聞分類。余弦定理是中學(xué)數(shù)學(xué),再加上一些不算很難的多維向量的知識,竟然解決了計(jì)算機(jī)新聞分類這樣的難題!
每一種工具的背后,是人們對世界的一種理解。蒸汽機(jī)和內(nèi)燃機(jī)背后,是力學(xué)的世界。電報、電話、電視、計(jì)算機(jī)和互聯(lián)網(wǎng)背后,是信息的世界。數(shù)學(xué)是抽象的工具,是其他工具背后的工具。每一門學(xué)科要成為科學(xué),都少不了數(shù)學(xué)。也許有一天人們會習(xí)慣,用數(shù)學(xué)工具來分析藝術(shù)。數(shù)學(xué)是一種語言,它源于具體的世界,又高于具體的世界。如果說語言是對世界的認(rèn)識和描述,如果說數(shù)學(xué)是一種語言,那么它一定是最接近神的語言??此坪敛幌嚓P(guān),卻又能描述萬事萬物。
學(xué)習(xí)數(shù)學(xué)有什么用?物理學(xué)家費(fèi)曼當(dāng)年在大一時提出這個問題,他的師兄建議他轉(zhuǎn)到物理系。今天,這個問題已不成為問題。具有扎實(shí)數(shù)學(xué)功底的人才正進(jìn)入各行各業(yè),例如金融業(yè)。我認(rèn)識一個出版社的老總,他招應(yīng)屆畢業(yè)生有一個條件:數(shù)學(xué)要好。
工具雖好,關(guān)鍵還要會用。最終要回到掌握先進(jìn)工具的人。軟件算法工程師加上計(jì)算機(jī)集群,這是目前一流企業(yè)必需的裝備。正如馬克。安德森所說的,各行各業(yè)的一流公司,都是軟件公司。優(yōu)秀的軟件算法工程師,是人才爭奪的焦點(diǎn)。這樣,我們就容易理解Google招工程師的要求。
對信息加工處理和傳遞的能力不斷增強(qiáng),是知識經(jīng)濟(jì)的特點(diǎn)?!稊?shù)學(xué)之美》展示了Google如何運(yùn)用數(shù)學(xué)和計(jì)算機(jī)網(wǎng)絡(luò),帶領(lǐng)我們進(jìn)入云計(jì)算和大數(shù)據(jù)時代。
知識經(jīng)濟(jì)時代的工作,就是在各自的領(lǐng)域中進(jìn)行科學(xué)研究??茖W(xué)研究要大膽假設(shè),小心求證??茖W(xué)研究要量化??茖W(xué)研究要有對比實(shí)驗(yàn)??茖W(xué)研究要有數(shù)學(xué)模型??茖W(xué)研究要有田野調(diào)查??茖W(xué)研究要有文獻(xiàn)查證。科學(xué)研究要有同行評議。《數(shù)學(xué)之美》向我們介紹了自然語言分析領(lǐng)域的科研方法和過程。
任何一個領(lǐng)域,深入進(jìn)去都有無數(shù)的細(xì)節(jié)。有興趣的人不但沒被這些細(xì)節(jié)嚇倒,反而會興致勃勃地研究,從而達(dá)到令人仰慕的高度。吳軍先生向我們展示了數(shù)學(xué)和算法中的這些細(xì)節(jié),也展示了他所達(dá)到的高度。值得我學(xué)習(xí)。
《數(shù)學(xué)之美》讀后感2000字:
第一次看到《數(shù)學(xué)之美》系列文章,是在2008年的Google黑板報上(那個時候Google還沒有退出中國)。作者吳軍博士當(dāng)時是Google的研究員,后來到騰訊擔(dān)任副總裁,兩年后又回到Google負(fù)責(zé)人工智能方面項(xiàng)目,現(xiàn)在他自己創(chuàng)辦了創(chuàng)投公司。可以說,吳軍是從學(xué)術(shù)到工業(yè),再到投資界的頂尖專家,在每個領(lǐng)域都有很深的造詣。
之所以對這個系列文章記憶猶新,是因?yàn)楫?dāng)初自己正在做機(jī)器學(xué)習(xí)方面的研究,而書中舉的很多例子正是我在研究過程中碰到的問題。和其他數(shù)學(xué)題材書籍比起來,最難能可貴的是,吳軍把抽象、深奧的數(shù)學(xué)方法解釋得通俗易懂,給人以很多啟發(fā),也讓人由衷感嘆數(shù)學(xué)的簡單之美和強(qiáng)大之美。
此后,吳軍把專欄內(nèi)容集冊成書,并發(fā)行了兩版,每次讀完都有更深一層的體會。至此,我從方法論和思維方式上對此書加以總結(jié),以對這次持續(xù)十年的閱讀歷程畫個句號。
一、學(xué)習(xí)建立解決智能問題的框架。在面對智能問題時,一般地可以考慮按以下四個步驟求解:1.將問題轉(zhuǎn)換成數(shù)字描述;2.找到恰當(dāng)?shù)臄?shù)學(xué)模型(目標(biāo)函數(shù));3.對復(fù)雜的數(shù)學(xué)模型進(jìn)行簡化或近似處理,以便計(jì)算;4.求解目標(biāo)函數(shù)。(對統(tǒng)計(jì)模型來說,還要利用數(shù)據(jù)學(xué)習(xí)參數(shù))
在今天這個大數(shù)據(jù)和云計(jì)算時代,統(tǒng)計(jì)模型往往是解決問題的利器,因?yàn)楝F(xiàn)在我們要解決的問題很多是不確定的。從信息論的角度講,統(tǒng)計(jì)模型的本質(zhì)是利用信息來消除或減少不確定性。此外,摩爾定律的持續(xù)作用,讓計(jì)算能力快速提高的同時,計(jì)算成本急劇降低,使得解決統(tǒng)計(jì)模型所需要的海量計(jì)算成為可能。
可以說,在科技發(fā)展的這個時間點(diǎn),統(tǒng)計(jì)+數(shù)據(jù)+計(jì)算=人工智能。以前計(jì)算能力不夠,統(tǒng)計(jì)模型無法得到求解,在當(dāng)?shù)仁阶筮吶囟箭R備之后,人工智能才就此走向了浪潮之巔。
二、在做事上,首先追求完成,而非完美。許多時候做事失敗,不是因?yàn)槿瞬粔騼?yōu)秀,而是做事的方法不對。一開始追求大而全的解決方案,之后長時間不能完成,最后不了了之。在工程上,應(yīng)該堅(jiān)持尋找簡單有效的解決方案,先幫助用戶解決80%的問題,再慢慢解決剩下的20%問題。
這么做至少有兩個好處:1.節(jié)約資源。資深工程師往往傾向于低估簡單方法的有效性,而完美的方案需要花費(fèi)大量的資源和時間,但可能最后的提高不多,即性價比不高;2.簡單的方案容易解釋每個步驟和方法背后的道理,這樣不僅便于出了問題時查錯,而且容易找到今后改進(jìn)的目標(biāo)。
三、正確認(rèn)識道和術(shù)。做事情的方法有道和術(shù)兩種境界,具體的做事方法是術(shù),做事的原理和原則是道。在術(shù)的層面,往往沒有捷徑可走,必須要通過不斷的訓(xùn)練和努力。道決定了做事結(jié)果的上限,很多時候在術(shù)的層面再努力,也無法突破這個邊界,這個時候就要考慮道是否正確。
對搜索引擎反作弊這件事,在術(shù)的層面的解決方案是,找出每個作弊的例子,分析并清除之。這種方法能解決問題,而且不需要太動腦子,但是工作量巨大,不斷會有新的作弊方法出現(xiàn),難以從個別現(xiàn)象上升到普通規(guī)律,即所謂的“頭痛醫(yī)頭、腳痛醫(yī)腳”。Google從一開始,就認(rèn)為反作弊實(shí)質(zhì)上是個通信中解決噪音問題,并從加強(qiáng)通信自身的抗干擾能力、過濾噪音兩方面入手,從根本上提高了搜索算法的抗作弊能力,達(dá)到了事半功倍的效果??梢娮非笮g(shù)的人一輩子工作很辛苦,只有掌握了做事的道才能永遠(yuǎn)游刃有余。
四、找到科學(xué)的工作方法很重要。人類為了實(shí)現(xiàn)飛行的夢想,首先想到的是模仿鳥類制作振動的翅膀,但這種方法根本不能讓人飛起來。后來英國人喬治·凱利爵士通過重新審視鳥類翅膀的功能,發(fā)現(xiàn)了空氣動力學(xué)原理,并制造了一架滑翔機(jī),實(shí)現(xiàn)了人類歷史上第一次載人滑翔飛行。后人從空氣動力學(xué)這個科學(xué)原理出發(fā),最終發(fā)明了現(xiàn)代固定翼飛機(jī)。
在人工智能領(lǐng)域,也存在上述“鳥飛派”和“空氣動力學(xué)派”的分別。機(jī)器翻譯中,最難的問題之一是詞的二義性。比如Bush一詞可以是美國總統(tǒng)布什的名字,也可以是灌木叢。最直接想法的是告訴計(jì)算機(jī)加一條規(guī)則:“總統(tǒng)做賓語時,主語必須是一個人”。如果這樣做的話,語法規(guī)則就多得數(shù)不清了,而且還有很多例外。
真正簡單卻實(shí)用的方法是,從大量文本中找到和總統(tǒng)布什一起出現(xiàn)的詞,比如美國、華盛頓、國會等等,對灌木叢也作如此處理。在翻譯Bush時,看看上下文中哪類相關(guān)的詞多就行了。這就巧妙地把一個人類的智能問題變成計(jì)算機(jī)擅長的計(jì)算統(tǒng)計(jì)問題。
從上述例子中可以看到,所謂鳥飛派,就是指從經(jīng)驗(yàn)出發(fā),讓計(jì)算機(jī)模仿人的思維方式,試圖獲得智能的做法,這個做法證明行不通。所謂空氣動力學(xué)派,就是指搞清楚智能問題的本質(zhì),讓計(jì)算機(jī)通過數(shù)據(jù)和數(shù)學(xué)模型解決智能問題。今天人工智能的全部進(jìn)步,都是走后一條道路的結(jié)果。
《數(shù)學(xué)之美》一書,即使對不做研究或工程的人來說,也是開卷有益的。當(dāng)吳軍老師如講故事般地,把復(fù)雜的問題以簡單的數(shù)學(xué)形式講述出來的時候,你會發(fā)現(xiàn),原本深奧的公式是如此親切和栩栩如生,也讓人由此堅(jiān)信,任何復(fù)雜的問題,最終都可以用簡單的方式去解決。
可以說,數(shù)學(xué)之美,也是化繁為簡之美。
看到吳軍的另一本書《數(shù)學(xué)之美》,激起了很深的興趣,所以很快把書看完了,普及了很多基礎(chǔ)的知識的同時也啟發(fā)了很多想法,感覺很爽。
我自己在交大學(xué)的是工科(雖然沒怎么上過課),小學(xué)、初中、高中都是一路參加數(shù)學(xué)競賽,名次都還不錯,也因此沒有參加中考、高考,一路保送,自己對數(shù)學(xué)有很深的感情,同時女朋友大學(xué)也是數(shù)學(xué)系,有點(diǎn)后悔的大學(xué)選了個并不感興趣的專業(yè)(交大當(dāng)時允許我隨便選專業(yè),我沒有跟父母商量自己選了船舶制造)。看這本書的過程中找到了很多高中在看競賽書的感覺,里面提到的很多概率論(不等式)、圖論、數(shù)論的知識是高中數(shù)學(xué)聯(lián)賽復(fù)試的重點(diǎn),高中的時候已經(jīng)研究的很深了,不過大學(xué)荒廢了之后也忘得差不多了,書中提到的很多定理還很有親切感
書名叫做《數(shù)學(xué)之美》,顯得有些太大,畢竟更多的是吳軍在google做搜索相關(guān)工作用到的數(shù)學(xué)模型的介紹與總結(jié),提到的數(shù)學(xué)部分大多集中在概率論、圖論、數(shù)論領(lǐng)域,所以書名太大了,可能hax說得對,也許是出版社為了賣書取得名字
不得不說吳軍是一個大家,文字中能夠透露出大家的氣勢,書中不斷的穿插著各種歷史上的大科學(xué)家以及科技領(lǐng)域的大家的小故事甚至八卦,從文字中非常能夠感受到吳軍是一個和他們一個層次的人(即使他自己會自謙說是一個二流的工程師之類)
書中具體的模型就不介紹了,說幾點(diǎn)我學(xué)到的知識(僅僅皮毛),能列出來的都是看完還有點(diǎn)印象的:
1.在互聯(lián)網(wǎng)的世界中,信息是如何量化的,信息熵是怎么回事?有啥用?
2.搜索領(lǐng)域中,語言是如何統(tǒng)計(jì)的,尤其是如何通過概率模型進(jìn)行分詞
3.搜索引擎是如何工作的—網(wǎng)絡(luò)爬蟲是怎么回事兒
4.PageRank是怎么回事?為了解決什么問題?
5.密碼與解密領(lǐng)域的數(shù)學(xué)模型,尤其提到的二戰(zhàn)時候的各種解密的趣事兒,提到的電視劇《暗算》打算抽空看下
6.拼音輸入法的數(shù)學(xué)模型
7.、文本自動分類的模型
……
看完之后最大的感受就是:
1.數(shù)學(xué)模型巨大作用,推動著新技術(shù)的發(fā)展
2.攻城師是一個偉大的職業(yè),能夠運(yùn)用這些知識轉(zhuǎn)化為生產(chǎn)力,非常牛叉
3.書中提到了很多數(shù)學(xué)模型都是在不斷的進(jìn)化、改良、升級,也就是說有人不斷的在做優(yōu)化,會有不斷更好的模型、更新的技術(shù)出現(xiàn),跟得上技術(shù)的發(fā)展可能也是比較重要的,否則很多人一直在做某一點(diǎn)上的持續(xù)優(yōu)化就沒有意義了。
但同時技術(shù)很大的作用是用來解決實(shí)際問題的,書中提到的各個數(shù)學(xué)模型、各種方法都是為了解決人們的需求或者業(yè)務(wù)的需求,畢竟公司不是科學(xué)研究所,所以追求通過技術(shù)直接解決用戶需求或者做成易用的工具給業(yè)務(wù)人員、運(yùn)營人員來間接解決用戶需求是挺重要的,可能不是技術(shù)人員覺得做到80分就可以了,而是用戶、使用工具的人覺得做到80分是一個重要的衡量
提到“工具”,想到趙趙說過的一句話:“不好用就等于沒有”,可能就是這個點(diǎn),同時運(yùn)用工具的人必須好好的運(yùn)用,如果用不好甚至不用就太對不起技術(shù)了。
相關(guān)推薦
最新更新