高中數學教案。
教案課件是老師需要精心準備的東西,因此教案課件可能就需要每天都去寫。教案的編寫需要注意教學過程的連貫性和完整性。接下來為您分享的是本站幼兒教師教育網的編輯為您挑選的“高中數學教案”,如果你認為這個想法值得推廣歡迎分享給你的社交圈!
一、教學目標
【知識與技能】
在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。
【過程與方法】
通過對方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學生探索發(fā)現及分析解決問題的實際能力得到提高。
【情感態(tài)度與價值觀】
滲透數形結合、化歸與轉化等數學思想方法,提高學生的整體素質,激勵學生創(chuàng)新,勇于探索。
二、教學重難點
【重點】
掌握圓的一般方程,以及用待定系數法求圓的一般方程。
【難點】
二元二次方程與圓的一般方程及標準圓方程的關系。
三、教學過程
(一)復習舊知,引出課題
1、復習圓的標準方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
高中數學教案9
1.課題
填寫課題名稱(高中代數類課題)
2.教學目標
(1)知識與技能:
通過本節(jié)課的學習,掌握......知識,提高學生解決實際問題的能力;
(2)過程與方法:
通過......(討論、發(fā)現、探究),提高......(分析、歸納、比較和概括)的能力;
(3)情感態(tài)度與價值觀:
通過本節(jié)課的學習,增強學生的學習興趣,將數學應用到實際生活中,增加學生數學學習的樂趣。
3.教學重難點
(1)教學重點:本節(jié)課的知識重點
(2)教學難點:易錯點、難以理解的知識點
4.教學方法(一般從中選擇3個就可以了)
(1)討論法
(2)情景教學法
(3)問答法
(4)發(fā)現法
(5)講授法
5.教學過程
(1)導入
簡單敘述導入課題的方式和方法(例:復習、類比、情境導出本節(jié)課的課題)
(2)新授課程(一般分為三個小步驟)
①簡單講解本節(jié)課基礎知識點(例:奇函數的定義)。
②歸納總結該課題中的重點知識內容,尤其對該注意的一些情況設置易錯點,進行強調??梢栽O計分組討論環(huán)節(jié)(分組判斷幾組函數圖像是否為奇函數,并歸納奇函數圖像的特點。設置定義域不關于原點對稱的函數是否為奇函數的易錯點)。
③拓展延伸,將所學知識拓展延伸到實際題目中,去解決實際生活中的問題。
(在新授課里面一定要表下出講課的大體流程,但是不必太過詳細。)
(3)課堂小結
教師提問,學生回答本節(jié)課的收獲。
(4)作業(yè)提高
布置作業(yè)(盡量與實際生活相聯系,有所創(chuàng)新)。
6.教學板書
2.高中數學教案格式
一.課題(說明本課名稱)
二.教學目的(或稱教學要求,或稱教學目標,說明本課所要完成的教學任務)
三.課型(說明屬新授課,還是復習課)
四.課時(說明屬第幾課時)
五.教學重點(說明本課所必須解決的關鍵性問題)
六.教學難點(說明本課的學習時易產生困難和障礙的知識傳授與能力培養(yǎng)點)
七.教學方法要根據學生實際,注重引導自學,注重啟發(fā)思維
八.教學過程(或稱課堂結構,說明教學進行的內容、方法步驟)
九.作業(yè)處理(說明如何布置書面或口頭作業(yè))
十.板書設計(說明上課時準備寫在黑板上的內容)
十一.教具(或稱教具準備,說明輔助教學手段使用的工具)
十二.教學反思:(教者對該堂課教后的感受及學生的收獲、改進方法)
一、基礎突破課本層面
其實很多同學在平時學習中也重視課本,概念公式也記住了但是任然感覺學習沒有多大效果,還不如多做兩道題目有意義,可是做題有無從思考,于是陷入了一個死循環(huán)。那么課本該怎么學呢?
①概念公式的拓展以及知識點之間的聯系
核心是概念的外延和概念之間的聯系,大家知道一般概念定理基本可以分成四塊:文字+圖形+式子+運算,而一般的題目也是由這四塊文字+圖形+式子+運算構成的,這就是解題與課本學習之間的對應的地方,所以概念學習就要從這四個方面入手挖掘突破,對于相關的學習挖掘方法我們給大家通過函數單調性做了一個簡單示范,可參見樊瑞軍相關視頻講解。
②課本題型歸納
大家知道高中數學的課本題目根據難易程度有A,B兩組,這些題目都是經過專家組慎重選擇的,并不是胡亂選擇的,而且高考試題的編制基本是通過課本深度改編的,所以我們在學習過程中首先要進行題型方面的歸納梳理,掌握這些題目的深層含義,并在后續(xù)的練習中不斷深化和補充題型,那么所謂的基礎題型基本就沒有問題了。這就是課本學習中的第二個突破口基礎題型掌握,對于題型的梳理方法我們通過必修二直線與圓這部分給大家做了詳細示范,詳細可參見視頻講解。
③運算提升
運算是高中數學解題必須的一個過程,而且會直接關系到考試成績的好壞,但是運算基本不會在課本直接呈現,而是要通過解題不斷歸納總結梳理,樊瑞軍認為高中數學運算主要分四塊:
1、高中數學基本式子變形處理如整式類,分式類,根式類等;
2、初高中各類方程及方程組突破;(yjS21.coM 幼兒教師教育網)
3、各類簡單,復雜及含參不等式突破;
4、特殊類式子處理。
④圖形突破
圖形特別是函數圖形不僅在高考的選擇題中直接考察更是解答題中必備的,但高考的考察一般都要高于課本,這就需要在課本學習的基礎上進行拓展,圖形突破主要包括畫圖,認識圖形,圖形拓展方法,圖形處理及圖形計算五個方面。
考試層面
一般的考試試卷和高考真題都是我們學習最好的積累歸納素材,考試試卷不僅能幫助我們把握學習方向,更能夠檢查學習效果。
二、把握做題方向重視歸納解題思考方法
高中數學的題目數量非常龐大,要想單純通過做題突破高考,對于絕大多數考生來說確實難以實現,隨著高考的改革,高考已把考查的'重點放在創(chuàng)造型、能力型的考查上,因此要精做習題,學會選擇,有助于判斷高考題目與平時常見題目的異同,增強判斷題目信度的能力,在遇到即將來臨的期中期末考試和未來的高考中哪些內容是高頻命題點,哪些是冷門的,有哪些基本題型,一本書學完了哪些還沒有掌握好都要有一個大致標記,以便于后續(xù)繼續(xù)學習歸納。當你做完一道習題后可以思考:本題考查了什么知識點?什么方法?我們從中得到了解題的什么方法?這一類習題中有什么解題的通性?
高中數學的題目數量非常龐大,要想單純通過做題突破高考,對于絕大多數考生來說確實難以實現,隨著高考的改革,高考已把考查的重點放在創(chuàng)造型、能力型的考查上,因此要精做習題,學會選擇,有助于判斷高考題目與平時常見題目的異同,增強判斷題目信度的能力,在遇到即將來臨的期中期末考試和未來的高考中哪些內容是高頻命題點,哪些是冷門的,有哪些基本題型,一本書學完了哪些還沒有掌握好都要有一個大致標記,以便于后續(xù)繼續(xù)學習歸納。當你做完一道習題后可以思考:本題考查了什么知識點?什么方法?我們從中得到了解題的什么方法?這一類習題中有什么解題的通性?
三、時刻面向高考以高考為核心
不論我們是高一還是高二甚至是高三,高考都是我們最后的沖刺的目標,所以我們在平時的學習過程中要始終面向高考,經常做高考題目,因為高考真題在考查知識點時的切入點,綜合程度以及題型與平時的練習題還是有一道差異,而且能幫助我們正確地的掌握高考知識點的難度和基本題型。我們平時的復習資料中,有相當的習題已超出高考難度或者與高考方向偏離較大,針對這些題目我們可以舍棄,而集中精力突破真正我們該突破的內容。
四、注重解題思路
學習數學核心在于如何思考,重視老師對該題目的分析和歸納,然而有很多同學往往忽視問題的分析,往往沉靜在老師講解的每一步計算、每一步推證過程。聽課雖然認真,但費力,聽完后滿腦子的計算過程,支離破碎。所以當教師解答習題時,學生要重視問題的思考分析。另外,當題目的答案給出時,并不代表問題的解答完畢,還要花一定的時間認真總結、歸納理解。要把這些解題策略全部納入自己的腦海成為永久地記憶,變?yōu)樽约航鉀Q這一類型問題的經驗和技能。同時也解決了學生中會聽課而不會做題目的壞毛病。
五、積累考試經驗
對于每一次考試和單元模擬要積累一定的考試經驗,掌握一定的考試技巧,在每一次考試中要鍛煉自己的承受能力、接受能力、解決問題以及應對一些突發(fā)情況等綜合能力。只有在平時的考試中不斷總結,那么在高考的考場上就會得心應手,避免考試發(fā)揮失常等的發(fā)生。
六、歸納小題及解答題方法
高中數學考試中的選擇題、填空題是基礎,共76分是整個考試得分的基礎,在平時學習過程中不但要在會接的基礎上提高解題速度,還要歸納總結選擇題的熱門題型,解題技巧等。
選擇題方法技巧主要通過選項布局特征,選擇題快速運算技巧,選擇題題目特征與核心解法,選擇題中的結論這四個方面進行歸納突破。
對于解答題而言高考的題型以及命題方式等都是非常成熟的,要在平時學習中對于解答題中的一般思考方法,熱門題型,基礎知識點,體現的基本運算,涵蓋的基本圖形以及書寫要點要求等六個方面進行歸納,對于解題思考,運算,圖形等相關方面我們在前面都做了一些分析,我們在后面將繼續(xù)給大家總結歸納,相關可關注樊瑞軍微信公眾號或者個人微信號,數學學科是能在短時間內提高成績的一門學科,數學是高考中三科綜合科之中一門拉開綜合成績的重要學科,學數學要重視方法,不能盲目隨波逐流。
七、制定好學習計劃和復習策略
學好數學要制定好計劃,不但要有高中三年的計劃,也要有本學期大的規(guī)劃,還要有每月、每周、每天的小計劃,計劃要與老師的復習計劃吻合,不能相互沖突,不要急于求成每一天甚至一星期全面突破一個考點,研究該知識點考查的不同側面、不同角度以及高考的難度,不斷地歸納、反思、回顧,集中精力提前突破高考中的??键c和重難點。
預習
如果你想把數學學好,單純地做學校發(fā)的資料是遠遠不夠的。去學校旁邊買一本側重講解的參考書。在老師講課之前,先把課本中要學習的內容看一遍(用心看),定義、公式可能記不住對嗎?對,看著寫著,一遍不行再來一遍,把這些基礎弄清楚為止。之后看你買的參考書,這比課本上所講解的又深了一個層次,每講解一個知識點,都會有一兩個例題??赐旰螅颜n本、參考書上面的知識點再回顧一遍,做課本后面的習題。
聽課
你的預習基本可以讓你明白90%了,至于課堂,有的放矢吧。你的選擇有很多,如果你的知識點掌握的已經很好,你可以再進行回顧,也可以自己找題做;如果你的知識點掌握的不是太好,你可以跟著老師再把知識點記憶一下。當老師拓展新的知識點時要認真聽,再聽一下,加深理解。
復習
對于各科而言,復習都很重要。拿數學來說,好多同學認為就是不斷的刷題。其實不然,當你要做課后習題的時候,首先應先溫習教材知識點,之后看你的課本后面是否有做錯的題目,如果有,再做一遍,最后就是找題做了。
一、向量的概念
1、既有又有的量叫做向量。用有向線段表示向量時,有向線段的長度表示向量的,有向線段的箭頭所指的方向表示向量的
2、叫做單位向量
3、的向量叫做平行向量,因為任一組平行向量都可以平移到同一條直線上,所以平行向量也叫做。零向量與任一向量平行
4、且的向量叫做相等向量
5、叫做相反向量
二、向量的表示方法
幾何表示法、字母表示法、坐標表示法。
三、向量的加減法及其坐標運算
四、實數與向量的乘積
定義:實數λ與向量的積是一個向量,記作λ
五、平面向量基本定理
如果e1、e2是同一個平面內的兩個不共線向量,那么對于這一平面內的任一向量a,有且只有一對實數λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2叫基底
六、向量共線/平行的充要條件
七、非零向量垂直的充要條件
八、線段的定比分點
設是上的兩點,P是上_________的任意一點,則存在實數,使_______________,則為點P分有向線段所成的比,同時,稱P為有向線段的定比分點
定比分點坐標公式及向量式
九、平面向量的數量積
(1)設兩個非零向量a和b,作OA=a,OB=b,則∠AOB=θ叫a與b的夾角,其范圍是[0,π],|b|cosθ叫b在a上的投影
(2)|a||b|cosθ叫a與b的數量積,記作a·b,即a·b=|a||b|cosθ
(3)平面向量的數量積的坐標表示
十、平移
典例解讀
1、給出下列命題:①若|a|=|b|,則a=b;②若A,B,C,D是不共線的四點,則AB=DC是四邊形ABCD為平行四邊形的充要條件;③若a=b,b=c,則a=c;④a=b的充要條件是|a|=|b|且a∥b;⑤若a∥b,b∥c,則a∥c
其中,正確命題的序號是______
2、已知a,b方向相同,且|a|=3,|b|=7,則|2a—b|=____
3、若將向量a=(2,1)繞原點按逆時針方向旋轉得到向量b,則向量b的坐標為_____
4、下列算式中不正確的是()
(A)AB+BC+CA=0(B)AB—AC=BC
(C)0·AB=0(D)λ(μa)=(λμ)a
5、若向量a=(1,1),b=(1,—1),c=(—1,2),則c=()
函數y=x2的圖象按向量a=(2,1)平移后得到的圖象的函數表達式為()
(A)y=(x—2)2—1(B)y=(x+2)2—1(C)y=(x—2)2+1(D)y=(x+2)2+1
7、平面直角坐標系中,O為坐標原點,已知兩點A(3,1),B(—1,3),若點C滿足OC=αOA+βOB,其中a、β∈R,且α+β=1,則點C的軌跡方程為()
(A)3x+2y—11=0(B)(x—1)2+(y—2)2=5
(C)2x—y=0(D)x+2y—5=0
8、設P、Q是四邊形ABCD對角線AC、BD中點,BC=a,DA=b,則PQ=_________
9、已知A(5,—1)B(—1,7)C(1,2),求△ABC中∠A平分線長
10、若向量a、b的坐標滿足a+b=(—2,—1),a—b=(4,—3),則a·b等于()
(A)—5(B)5(C)7(D)—1
11、若a、b、c是非零的平面向量,其中任意兩個向量都不共線,則()
(A)(a)2·(b)2=(a·b)2(B)|a+b|>|a—b|
(C)(a·b)·c—(b·c)·a與b垂直(D)(a·b)·c—(b·c)·a=0
12、設a=(1,0),b=(1,1),且(a+λb)⊥b,則實數λ的值是()
(A)2(B)0(C)1(D)—1/2
16、利用向量證明:△ABC中,M為BC的中點,則AB2+AC2=2(AM2+MB2)
17、在三角形ABC中,=(2,3),=(1,k),且三角形ABC的一個內角為直角,求實數k的值
18、已知△ABC中,A(2,—1),B(3,2),C(—3,—1),BC邊上的高為AD,求點D和向量
學習目標
明確排列與組合的聯系與區(qū)別,能判斷一個問題是排列問題還是組合問題;能運用所學的排列組合知識,正確地解決的實際問題.
學習過程
一、學前準備
復習:
1.(課本P28A13)填空:
(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數是 ;
(2)要從5件不同的禮物中選出3件分送3為同學,不同方法的種數是 ;
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數是 ;
(4)集合A有個 元素,集合B有 個元素,從兩個集合中各取1個元素,不同方法的種數是 ;
二、新課導學
探究新知(復習教材P14~P25,找出疑惑之處)
問題1:判斷下列問題哪個是排列問題,哪個是組合問題:
(1)從4個風景點中選出2個安排游覽,有多少種不同的方法?
(2)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?
應用示例
例1.從10個不同的文藝節(jié)目中選6個編成一個節(jié)目單,如果某女演員的獨唱節(jié)目一定不能排在第二個節(jié)目的位置上,則共有多少種不同的排法?
例2.7位同學站成一排,分別求出符合下列要求的不同排法的種數.
(1) 甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用.
(1)能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象.
(2)能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題.
2.通過對數函數概念的學習,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力.
3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性.
教學建議
教材分析
(1)對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的.故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解.對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數和函數知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎.
(2)本節(jié)的教學重點是理解對數函數的定義,掌握對數函數的圖象性質.難點是利用指數函數的圖象和性質得到對數函數的圖象和性質.由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點.
(3)本節(jié)課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開.而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節(jié)課的難點.
教法建議
(1)對數函數在引入時,就應從學生熟悉的指數問題出發(fā),通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
(2)在本節(jié)課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.
教學設計示例課????題 元、角、分的認識?。幾時幾分??倧土暤诎恕⒕蓬},練習十八第10題、15題。 設計
教學目標 本學期在學習“元、角、分”時,主要通過大量的操作、活動幫助學生認識元、角、分之間的關系,以及人民幣的應用,使學生對元、角、分有比較豐富的感性認識。因此,教材在復習時沒有再安排動手操作的內容,只是讓學生對已學的元、角、分關系進行復習,并結合具體情境進行應用。正確即可。復習中,還要注意培養(yǎng)學生估計時間的意識和習慣,即看鐘面時,如果一時說不出準確的時間,可以說一說大概是幾時幾分。多進行這樣的練習,對學生建立時間觀念是很有好處的。另外,還要注意在日常生活中結合具體實際多向學生滲透時間的觀念。
教學重點 幫助學生認識元、角、分之間的關系,以及人民幣的應用,使學生對元、角、分有比較豐富的感性認識。滲透時間的觀念。
教學難點 幫助學生認識元、角、分之間的關系,以及人民幣的應用,使學生對元、角、分有比較豐富的感性認識。滲透時間的觀念。
讓學生回憶所學的知識。如果學生遺忘了,還可以讓學生用學具擺一擺,用實物幫助學生思考。
學生獨立完成第八題。校對。
二、幾時幾分。
1、是師生出示鐘面。
師撥生說。
生說生說。
生生互撥互說。
師說生撥。
2、揭示總復習第九題。
學生獨立看著鐘面填寫時間。
校對。
3、補充:我們已經認識了幾時幾分,整時、半時,那么,分針在12不到一點或12超過一點該怎么讀呢?
三、完成練習十八15題。第10題引導學生說一說,再試著提出另外的問題進行計算。提的好的給于鼓勵。
四、完成作業(yè)本上的作業(yè)。
三角函數的周期性
一、學習目標與自我評估
1 掌握利用單位圓的幾何方法作函數 的圖象
2 結合 的圖象及函數周期性的定義了解三角函數的周期性,及最小正周期
3 會用代數方法求 等函數的周期
4 理解周期性的幾何意義
二、學習重點與難點
“周期函數的概念”, 周期的求解。
三、學法指導
1、 是周期函數是指對定義域中所有都有,即應是恒等式。
2、周期函數一定會有周期,但不一定存在最小正周期。
四、學習活動與意義建構
五、重點與難點探究
例1、若鐘擺的高度 與時間 之間的函數關系如圖所示
(1)求該函數的周期;
(2)求 時鐘擺的高度。
例2、求下列函數的周期。
(1) (2)
總結:(1)函數 (其中均為常數,且的周期T=xx)
(2)函數 (其中 均為常數,且的周期T=xx)
例3、求證: 的周期為 。
例4、(1)研究 和 函數的圖象,分析其周期性。(2)求證: 的周期為 (其中 均為常數,
且
總結:函數 (其中 均為常數,且的周期T= 。
例5、(1)求 的周期。
(2)已知 滿足 ,求證: 是周期函數
課后思考:能否利用單位圓作函數 的圖象。
六、作業(yè):
七、自主體驗與運用
知識技能:初步了解分散系概念;初步認識膠體的概念,鑒別及凈化方法;了解膠體的制取方法。
能力培養(yǎng):通過丁達爾現象、膠體制取等實驗,培養(yǎng)學生的觀察能力、動手能力,思維能力和自學能力。
科學思想:通過實驗、聯系實際等手段,激發(fā)學生的學習興趣。
重點:膠體的有關概念;學生實驗能力、思維能力、自學能力的培養(yǎng)。
【展示】氯化鈉溶液、泥水懸濁液、植物油和水的混合液振蕩而成的乳濁液。
【提問】哪種是溶液,哪種是懸濁液、乳濁液?
思考:
(1)分散系、分散質和分散劑概念。
(2)溶液、懸濁液、乳濁液三種分散系中的分散質分別是什么?
【提問】溶液、懸濁液、乳濁液三種分散系有什么共同點和不同點?
觀察、辨認、回答。
閱讀課本,找出三個概念。
(1)分散系:一種物質(或幾種物質)分散到另一種物質里形成的混合物。
(2)溶液中溶質是分散質;懸濁液和乳濁液中的分散質分別是:固體小顆粒和小液滴。
思考后得出結論:
共同點:都是一種(或幾種)物質的微粒分散于另一種物質里形成的混合物。
復習舊知識,從而引出新課。
培養(yǎng)自學能力,了解三個概念。
培養(yǎng)學生歸納比較能力,了解三種分散系的異同。
【展示】氫氧化鐵膠體,和氯化鈉溶液比較。
【提問】兩者在外部特征上有何相似點?
【設問】二者有無區(qū)別呢?
【指導實驗】(投影)用有一小洞的厚紙圓筒(直徑比試管略大些),套在盛有氫氧化鐵溶膠的試管外面,用聚光手電筒照射小孔,從圓筒上方向下觀察,注意有何現象,用盛有氯化鈉溶液的試管做同樣的實驗,觀察現象。
【小結】丁達爾現象及其成因,并指出能發(fā)生丁達爾現象的是另一種分散系――膠體。
不同點:溶液中分散質微粒直徑小于10-9m,是均一、穩(wěn)定、透明的;濁液中分散質微粒直徑大于10-7m,不均一、不穩(wěn)定,懸濁液靜置沉淀,乳濁液靜置易分層。
分組實驗。
觀察實驗現象。
現象:光束照射氫氧化鐵溶膠時產生一條光亮的“通路”,而照射氯化鈉溶液時無明顯現象。
培養(yǎng)觀察能力,引起學生注意,激發(fā)興趣。
培養(yǎng)學生動手能力,觀察能力。
【設問】通過以上的實驗,我們知道膠體有丁達爾現象,而溶液沒有。那么,二者本質區(qū)別在什么地方呢?
【設問】這個實驗說明什么問題?
【小結】1.分子、離子等較小微粒能透過半透膜的微孔,膠體微粒不能透過半透膜,溶液和膠體的最本質區(qū)別在于微粒的大小,分散質微粒的直徑大小在10-9~10-7m之間的.分散系叫做膠體。從而引出膠體概念。
觀察實驗,敘述現象。
現象:在加入硝酸銀的試管里出現了白色沉淀;在加入碘水的試管里不發(fā)生變化。
思考后回答:氯化鈉可以透過半透膜的微孔,而淀粉膠體的微粒不能透過。
創(chuàng)設問題情境,激發(fā)興趣。
培養(yǎng)思維能力。
【提問】在日常生活中見到過哪些膠體?
討論,回答:淀粉膠體、土壤膠體、血液、云、霧、Al(OH)3膠體等等。
【指導閱讀】課本第74頁最后一行至第75頁第一段,思考膠體如何分類?
看書自學,找出答案。
了解膠體分類。
【指導實驗】強調:1.制備上述膠體時要注意不斷攪拌,但不能用玻璃棒攪拌,否則會產生沉淀。2.在制取硅酸膠體時,一定要將1mL水玻璃倒入5mL~10mL鹽酸中,切不可倒過來傾倒,否則
會產生硅酸凝膠。
【提問】如何證實你所制得的是膠體?請你檢驗一下你所制得的氫氧化鐵膠體。
分組實驗:
用燒杯盛約30mL蒸餾水,加熱到沸騰,然后逐滴加入飽和氯化鐵溶液,邊加邊振蕩,直至溶液變成紅褐色,即得氫氧化鐵膠體。
在一個大試管里裝入5~10mL1mol/L鹽酸,并加入1mL水玻璃,然后用力振蕩,即得硅酸溶膠。
在一個大試管里注入0.01mol/L碘化鉀溶液10mL,用膠頭滴管滴入8~10滴相同濃度的硝酸銀溶液,邊滴加邊振蕩,即得碘化銀膠體。
思考后回答,膠體可產生丁達爾現象,然后檢驗。
培養(yǎng)學生實驗能力。
培養(yǎng)學生嚴謹求實,一絲不茍的科學態(tài)度。
使學生親自體驗成功與失敗,激發(fā)興趣。
【提問】請學生寫出制取三種膠體的化學方程式,請一個同學寫在黑板上,然后追問:這個同學書寫是否正確?
(1)棱柱:
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點字母,如五棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。
(3)棱臺:
定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類:以底面多邊形的邊數作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點字母,如五棱臺
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體
幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。
(6)圓臺:
定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。
一、教材分析
1、教材地位和作用:二面角是我們日常生活中經常見到的、很普通的一個空間圖形。“二面角”是人教版《數學》第二冊(下B)中9.7的內容。它是在學生學過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學生進一步研究多面體的基礎。因此,它起著承上啟下的作用。通過本節(jié)課的學習還對學生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
2、教學目標:
知識目標:(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。
(2)進一步培養(yǎng)學生把空間問題轉化為平面問題的化歸思想。
能力目標:(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。
德育目標:(1)使學生認識到數學知識來自實踐,并服務于實踐,增強學生應用數學的意識(2)通過揭示線線、線面、面面之間的內在聯系,進一步培養(yǎng)學生聯系的辯證唯物主義觀點。
情感目標:在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,拉近學生之間、師生之間的情感距離。
3、重點、難點:
重點:“二面角”和“二面角的平面角”的概念
難點:“二面角的平面角”概念的形成過程
二、教法分析
1、教學方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導、活動探究和類比發(fā)現法,在形成技能時以訓練法、探究研討法為主。
2、教學控制與調節(jié)的措施:本節(jié)課由于充分運用了多媒體和實物教具,預計學生對二面角及二面角平面角的概念能夠理解,根據學生及教學的實際情況,估計二面角的具體求法一節(jié)課內完成有一定的困難,所以將其放在下節(jié)課。
3、教學手段:教學手段的現代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據本節(jié)課的教學需要,確定利用多媒體課件來輔助教學;此外,為加強直觀教學,還要預先做好一些二面角的模型。
三、學法指導
1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學習中去,成為學習的主人。
2、學會:在掌握基礎知識的同時,學生要注意領會化歸、類比聯想等數學思想方法的運用,學會建立完善的認知結構。
3、會學:通過自己親身參與,學生要領會復習類比和深入研究這兩種知識創(chuàng)新的方法,從而既學到知識,又學會創(chuàng)新,既能解決問題,更能發(fā)現問題。
四、教學過程
心理學研究表明,當學生明確數學概念的學習目的和意義時,就會對概念的學習產生濃厚的興趣。創(chuàng)設問題情境,激發(fā)了學生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。
(一)、二面角
1、揭示概念產生背景。
問題情境1、在平面幾何中“角”是怎樣定義的?
問題情境2、在立體幾何中我們還學習了哪些角?
問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的角——二面角(板書課題)。
通過這三個問題,打開了學生的原有認知結構,為知識的創(chuàng)新做好了準備;同時也讓學生領會到,二面角這一概念的產生是因為它與我們的生活密不可分,激發(fā)學生的求知欲。2、展現概念形成過程。
問題情境4、那么,應該如何定義二面角呢?
創(chuàng)設這個問題情境,為學生創(chuàng)新思維的展開提供了空間。引導學生回憶平面幾何中“角”這一概念的引入過程。教師應注意多讓學生說,對于學生的創(chuàng)新意識和創(chuàng)新結果,教師要給與積極的評價。
問題情境5、同學們能舉出一些二面角的實例嗎?通過實際運用,可以促使學生更加深刻地理解概念。
(二)、二面角的平面角
1、揭示概念產生背景。平面幾何中可以把角理解為是一個旋轉量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉而成的,也是一個旋轉量。說明二面角不僅有大小,而且其大小是唯一確定的。平面
與平面的位置關系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,我們有必要來研究二面角的度量問題。
問題情境6、二面角的大小應該怎么度量?能否轉化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產生的背景。
2、展現概念形成過程
(1)、類比。教師啟發(fā),尋找類比聯想的對象。
問題情境7、我們以前碰到過類似的問題嗎?引導學生回憶前面所學過的兩種空間角的定義,電腦演示以提高效率。
問題情境8、兩定義的共同點是什么?生:空間角總是轉化為平面的角,并且這個角是唯一確定的。
問題情境9、這個平面的角的頂點及兩邊是如何確定的?
(2)、提出猜想:二面角的大小也可通過平面的角來定義。對學生提出的猜想,教師應該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識和習慣,這對強化他們的創(chuàng)新意識大有幫助。
問題情境10、那么,這個角的頂點及兩邊應如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內。這也是學生直覺思維的結果。
(3)、探索實驗。通過實驗,激發(fā)了學生的學習興趣,培養(yǎng)了學生的動手操作能力。
(4)、繼續(xù)探索,得到定義。
問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發(fā)現,角的頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內唯一確定,聯想到平面內過直線上一點的垂線的唯一性,由此發(fā)現二面角的大小的一種描述方法。
(5)、自我驗證:要求學生閱讀課本上的定義。并說明定義的合理性,教師作適當的引導,并加以理論證明。
(三)、二面角及其平面角的畫法
主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。
(四)、范例分析
為鞏固學生所學知識,由于時間的關系設置了一道例題。來源于實際生活,不但培養(yǎng)了學生分析問題和解決問題的能力,也讓學生領會到數學概念來自生活實際,并服務于生活實際,從而增強他們應用數學的意識。
例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。
分析:涉及二面角的計算問題,關鍵是找出(或作出)該二面角的平面角。引導學生充分利用已知圖形的性質,最后發(fā)現可由定義找出該二面角的平面角??勺寣W生先做,為調動學生的積極性,并增加學生的參與感,活躍課堂的氣氛,教師可給學生板演的機會。教師講評時強調解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。
變式訓練:圖中共有幾個二面角?能求出它們的大小嗎?根據課堂實際情況,本題的變式訓練也可作為課后思考題。
題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)
(五)、練習、小結與作業(yè)
練習:習題9.7的第3題
小結在復習完二面角及其平面角的概念后,要求學生對空間中三種角加以比較、歸納,以促成學生建立起空間中角這一概念系統(tǒng)。同時要求學生對本節(jié)課的學習方法進行總結,領會復習類比和深入研究這兩種知識創(chuàng)新的方法。
作業(yè):習題9.7的第4題
思考題:見例題
五、板書設計(見課件)
以上是我對《二面角》授課的初步設想,不足之處,懇請大家批評指正,謝謝!
課題:
等比數列的概念
教學目標
1、通過教學使學生理解等比數列的概念,推導并掌握通項公式、
2、使學生進一步體會類比、歸納的思想,培養(yǎng)學生的觀察、概括能力、
3、培養(yǎng)學生勤于思考,實事求是的精神,及嚴謹的科學態(tài)度、
教學重點,難點
重點、難點是等比數列的定義的歸納及通項公式的推導、
教學用具
投影儀,多媒體軟件,電腦、
教學方法
討論、談話法、
教學過程
一、提出問題
給出以下幾組數列,將它們分類,說出分類標準、(幻燈片)
①—2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
⑥1,—1,1,—1,1,—1,1,—1,…
⑦1,—10,100,—1000,10000,—100000,…
⑧0,0,0,0,0,0,0,…
由學生發(fā)表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數列)、
二、講解新課
請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題、假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數
這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——等比數列、(這里播放變形蟲分裂的多媒體軟件的第一步)
等比數列(板書)
1、等比數列的定義(板書)
根據等比數列與等差數列的名字的區(qū)別與聯系,嘗試給等比數列下定義、學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的教師寫出等比數列的定義,標注出重點詞語、
請學生指出等比數列②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是等比數列、學生通過觀察可以發(fā)現③是這樣的.數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例、而后請學生概括這類數列的一般形式,學生可能說形如的數列都滿足既是等差又是等比數列,讓學生討論后得出結論:當時,數列既是等差又是等比數列,當時,它只是等差數列,而不是等比數列、教師追問理由,引出對等比數列的認識:
2、對定義的認識(板書)
(1)等比數列的首項不為0;
(2)等比數列的每一項都不為0,即
問題:一個數列各項均不為0是這個數列為等比數列的什么條件?
(3)公比不為0、
用數學式子表示等比數列的定義、
是等比數列
①、在這個式子的寫法上可能會有一些爭議,如寫成
,可讓學生研究行不行,好不好;接下來再問,能否改寫為
是等比數列?為什么不能?式子給出了數列第項與第
項的數量關系,但能否確定一個等比數列?(不能)確定一個等比數列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式、
3、等比數列的通項公式(板書)
問題:用和表示第項
①不完全歸納法
②疊乘法,…,,這個式子相乘得,所以(板書)
(1)等比數列的通項公式得出通項公式后,讓學生思考如何認識通項公式、(板書)
(2)對公式的認識
由學生來說,最后歸結:
①函數觀點;
②方程思想(因在等差數列中已有認識,此處再復習鞏固而已)、
這里強調方程思想解決問題、方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節(jié)課再研究、同學可以試著編幾道題。
三、小結
1、本節(jié)課研究了等比數列的概念,得到了通項公式;
2、注意在研究內容與方法上要與等差數列相類比;
3、用方程的思想認識通項公式,并加以應用。
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0、01毫米。
參考答案:
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是粒,用計算器算一下吧(對數算也行)。
幼兒教師教育網的幼兒園教案頻道為您編輯的《高中數學教案》內容,希望能幫到您!同時我們的高中數學教案專題還有需要您想要的內容,歡迎您訪問!
相關推薦
一、活動內容:比較高矮 二、活動目標 1、嘗試用目測的方法比較高矮,知道要在同一平面上比較高矮。 2、感知高矮的相對性。 3、樂意參與比較高矮操作并用語言交流表達出來。 配套課件:中班數學課件《比高矮...
教師會將課本的主要教學內容整理到教案課件中,現在是教師開始編寫教案課件的時候。高效的教學水平可以體現在教師編寫的教案課件中,那么如何才能編寫出好的教案課件呢?請跟隨幼兒教師教育網的編輯的步伐一同了解“高中數學教案”,相信您參考后一定會有收獲!...
今天本篇文章是關于高中數學課件教案的整理。教案課件是老師教學工作的必要環(huán)節(jié)和上好課的先決條件。相信老師都非常熟悉撰寫教案課件的方法和技巧。教案是課堂教學中起到橋梁作用的重要工具。大家務必收藏本頁,以便隨時回顧學習。...
俗話說,不打無準備之仗。幼兒園的老師都希望自己講的課學生們愛聽,能學習的更好,因此,老師會在授課前準備好教案,教案有助于老師在之后的上課教學中井然有序的進行。您知道幼兒園教案應該要怎么下筆嗎?為滿足你的需求,小編特地編輯了“高中數學教案模板6篇”,供你參考,希望能幫到你。一、教學目標1.知識與技能掌...
最新更新