幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

數(shù)學(xué)二次根式教案

發(fā)布時(shí)間:2024-08-16

小編為您準(zhǔn)備了一本“數(shù)學(xué)二次根式教案”供您參考,感謝您花時(shí)間閱讀希望你受益。每個(gè)老師都需要在課前有一份完整教案課件,相信老師對(duì)要寫(xiě)的教案課件不會(huì)陌生。?學(xué)生的反應(yīng)可以反映教學(xué)質(zhì)量。

數(shù)學(xué)二次根式教案(篇1)

1.什么叫二次根式?

2.下列各式是二次根式,求式子中的字母所滿足的條件:

(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實(shí)數(shù).

我們知道,正數(shù)a有兩個(gè)平方根,分別記作零的平方根是零。引導(dǎo)學(xué)生總結(jié)出,其中,就是一個(gè)非負(fù)數(shù)a的算術(shù)平方根。將符號(hào)看作開(kāi)平方求算術(shù)平方根的運(yùn)算,看作將一個(gè)數(shù)進(jìn)行平方的運(yùn)算,而開(kāi)平方運(yùn)算和平方運(yùn)算是互為逆運(yùn)算,因而有:

這里需要注意的是公式成立的條件是a≥0,提問(wèn)學(xué)生,a可以代表一個(gè)代數(shù)式嗎?

如果我們把,同學(xué)們想一想是否就可以把任何一個(gè)非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方形式了.

例1計(jì)算:

分析:這個(gè)例題中的四個(gè)小題,主要是運(yùn)用公式。其中(2)、(3)、(4)題又運(yùn)用了整式乘除中學(xué)習(xí)的積的冪的運(yùn)算性質(zhì).結(jié)合第(2)小題中的,說(shuō)明,這與帶分?jǐn)?shù)。因此,以后遇到,應(yīng)寫(xiě)成,而不宜寫(xiě)成。

例2把下列非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方的.形式:

(1)5;(2)11;(3)1。6;(4)0。35.

例3把下列各式寫(xiě)成平方差的形式,再分解因式:

(1)4x2―1;(2)a4―9;

(3)3a2―10;(4)a4―6a2+9.

1.繼續(xù)鞏固二次根式的定義,及二次根式中被開(kāi)方數(shù)的取值范圍問(wèn)題.

2.關(guān)于公式的應(yīng)用。

(1)經(jīng)常用于乘法的運(yùn)算中.

(2)可以把任何一個(gè)非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方的形式,解決在實(shí)數(shù)范圍內(nèi)因式分解等方面的問(wèn)題.

注意第(4)題需有2m≥0,m≥0,又需有―3m≥0,即m≤0,故m=0.

2.實(shí)數(shù)a、b在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如下圖所示:

分析:通過(guò)本題滲透數(shù)形結(jié)合的思想,進(jìn)一步鞏固二次根式的定義、性質(zhì),引導(dǎo)學(xué)生分析:由于a<0,b>0,且|a|>|b|.

教材P.172習(xí)題11.1;A組2、3;B組2.

補(bǔ)充作業(yè):

下列各式中的字母滿足什么條件時(shí),才能使該式成為二次根式?

分析:要使這些式成為二次根式,只要被開(kāi)方式是非負(fù)數(shù)即可,啟發(fā)學(xué)生分析如下:

(1)由―|a―2b|≥0,得a―2b≤0,

但根據(jù)絕對(duì)值的性質(zhì),有|a―2b|≥0,

∴|a―2b|=0,即a―2b=0,得a=2b.

(2)由(―m2―1)(m―n)≥0,―(m2+1)(m―n)≥0

∴(m2+1)(m―n)≤0,又m2+1>0,

∴ m―n≤0,即m≤n.

說(shuō)明:本題求解較難些,但基本方法仍是由二次根式中被開(kāi)方數(shù)(式)大于或等于零列出不等式.通過(guò)本題培養(yǎng)學(xué)生對(duì)于較復(fù)雜的題的分析問(wèn)題和解決問(wèn)題的能力,并且進(jìn)一步鞏固二次根式的概念.

數(shù)學(xué)二次根式教案(篇2)

初中數(shù)學(xué)題目精選之二次根式題,相信朋友們的回答都很輕松吧。接下來(lái)會(huì)為大家繼續(xù)帶來(lái)更全更精的`初中數(shù)學(xué)題精選,同學(xué)們準(zhǔn)備好答題了嗎。

9.把下列各式分解因式:

③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2

10.已知x=-19,y=12,求代數(shù)式4x2+12xy+9y2的值.

11.已知│x-y+1│與x2+8x+16互為相反數(shù),求x2+2xy+y2的值.

答案:

9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2

5.已知9x2-6xy+k是完全平方式,則k的值是________.

7.-4x2+4xy+(_______)=-(_______).

8.已知a2+14a+49=25,則a的值是_________.

答案:

5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12

數(shù)學(xué)二次根式教案(篇3)

1、我們學(xué)校的校醫(yī)非常關(guān)心我們同學(xué)的身體健康,經(jīng)常要了解我們同學(xué)的體重,身高等,(出示座位圖)

如果老師想要了解三(5)班第一組6位同學(xué)的身高的情況,你有什么辦法能讓老師一眼就看明白?

3、出示幾個(gè)空白的條形統(tǒng)計(jì)圖,讓學(xué)生根據(jù)統(tǒng)計(jì)表嘗試完成條形統(tǒng)計(jì)圖。

4、如果用條形統(tǒng)計(jì)圖表示這個(gè)小組學(xué)生的身高,每格表示多少個(gè)單位比較合適?

5、出示教材上的統(tǒng)計(jì)圖,讓學(xué)生觀察,討論。

你能說(shuō)說(shuō)破這個(gè)統(tǒng)計(jì)圖跟我們以前學(xué)過(guò)的.統(tǒng)計(jì)圖有什么不同嗎?

用折線表示的起始格代表多少個(gè)單位?其他格代表多少個(gè)單位?這樣畫(huà)有什么好處?

6、小組合作學(xué)習(xí),學(xué)生匯報(bào)。

在統(tǒng)計(jì)圖的縱軸上,起始格和其他格表示的單位量是不同的(第一個(gè)圖中起始格表示137厘米,其他每格表示1厘米。)

7、讓學(xué)生按照例子把其他兩個(gè)同學(xué)的條形補(bǔ)充完整。

8、學(xué)生討論:什么情形下應(yīng)該使用這樣的統(tǒng)計(jì)圖?這種統(tǒng)計(jì)圖的優(yōu)點(diǎn)是什么?

9、觀察體重統(tǒng)計(jì)圖,看看這個(gè)圖中的起始格表示多少個(gè)單位?其他每格表示多少個(gè)單位?

9、這個(gè)統(tǒng)計(jì)圖跟我們剛才學(xué)習(xí)的學(xué)生身高統(tǒng)計(jì)圖有什么不同?

10、獨(dú)立完成書(shū)上的統(tǒng)計(jì)圖。小組進(jìn)行學(xué)習(xí)小結(jié)。

11、通過(guò)完成這一份統(tǒng)計(jì)圖。你得到了哪些信息?進(jìn)一步體會(huì)統(tǒng)計(jì)的作用。

12、你想對(duì)這些同學(xué)說(shuō)些什么?

出示“中國(guó)10歲兒童身高、體重的正常值”,引導(dǎo)學(xué)生把學(xué)生的身高、體重與正常值進(jìn)行對(duì)比,找出哪些學(xué)生的身高在正常值以下,哪些學(xué)生的體重超出了正常值,并提出合理化建議。

(實(shí)踐作業(yè))讓學(xué)生從報(bào)紙、書(shū)籍上找到更多形式的統(tǒng)計(jì)圖表,并找出相應(yīng)的信息,可以培養(yǎng)學(xué)生從各種渠道收集信息的能力。

全課小結(jié)。

教學(xué)反思:

數(shù)學(xué)二次根式教案(篇4)

根據(jù)本節(jié)內(nèi)容的特點(diǎn)和與平行四邊形的關(guān)系,建議教師在教學(xué)過(guò)程中注意以下問(wèn)題:

1.菱形的知識(shí),學(xué)生在小學(xué)時(shí)接觸過(guò)一些,可由小學(xué)學(xué)過(guò)的知識(shí)作為引入。

2.菱形在現(xiàn)實(shí)中的實(shí)例較多,在講解菱形的性質(zhì)和判定時(shí),教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實(shí)例來(lái)進(jìn)行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識(shí).

3. 如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材148頁(yè)圖4-33所示,制作一個(gè)平行四邊形作為教學(xué)過(guò)程中的道具,既增強(qiáng)了學(xué)生的動(dòng)手能力和參與感,有在教學(xué)中有切實(shí)的體例,使學(xué)生對(duì)知識(shí)的掌握更輕松些.

4. 在對(duì)性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個(gè)學(xué)生分別對(duì)事先準(zhǔn)備后的圖形進(jìn)行邊、角、對(duì)角線的測(cè)量,然后在組內(nèi)進(jìn)行整理、歸納.

5. 由于菱形和菱形的性質(zhì)定理證明比較簡(jiǎn)單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來(lái)進(jìn)行具體的證明.

6.在菱形性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。

1.掌握菱形概念,知道菱形與平行四邊形的關(guān)系.

2.掌握菱形的性質(zhì).

3.通過(guò)運(yùn)用菱形知識(shí)解決具體問(wèn)題,提高分析能力和觀察能力.

4.通過(guò)教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)興趣.

5.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過(guò)畫(huà)圖向?qū)W生滲透集合思想.

6.通過(guò)菱形性質(zhì)的學(xué)習(xí),體會(huì)菱形的圖形美.

教具(做一個(gè)短邊可以運(yùn)動(dòng)的平行四邊形)、投影儀和膠片,常用畫(huà)圖工具

教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥

數(shù)學(xué)二次根式教案(篇5)

初中數(shù)學(xué)《二次根式的運(yùn)算》教案

一、教學(xué)目標(biāo)

【知識(shí)與技能】掌握二次根式的運(yùn)算法則,并能熟練進(jìn)行二次根式的混合運(yùn)算。

【過(guò)程與方法】通過(guò)引導(dǎo),在多解中進(jìn)行比較,尋求有效快捷的計(jì)算方法。

【情感態(tài)度與價(jià)值觀】通過(guò)獨(dú)立思考與小組合作討論,培養(yǎng)良好的學(xué)習(xí)態(tài)度,并且注重培養(yǎng)類比思想。

二、教學(xué)重難點(diǎn)

【重點(diǎn)】混合運(yùn)算的法則,明確三級(jí)運(yùn)算的順序。

【難點(diǎn)】靈活運(yùn)用因式分解,約分等技巧使計(jì)算簡(jiǎn)便。

三、教學(xué)過(guò)程

(四)總結(jié)提高

這節(jié)課的學(xué)習(xí)過(guò)后,你收獲了哪些?

二次根式的混合運(yùn)算應(yīng)注意什么?

作業(yè):閱讀與思考,海倫秦九韶公式,下節(jié)課分享感受。

四、板書(shū)設(shè)計(jì)

數(shù)學(xué)二次根式教案(篇6)

1、知識(shí)與技能:了解二次根式的概念,能求根號(hào)內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問(wèn)題。

3、情感、態(tài)度與價(jià)值觀:通過(guò)小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。

1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡(jiǎn)單的計(jì)算。

學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識(shí),并根據(jù)自己的'理解完成預(yù)習(xí)學(xué)案。

(一)合作學(xué)習(xí)階段。

教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問(wèn)題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時(shí)的引導(dǎo)、點(diǎn)撥,對(duì)普遍存在的問(wèn)題做好記錄。

1. 各小組推選代表依次對(duì)課堂引導(dǎo)材料中的問(wèn)題進(jìn)行解答,不足的本組成員可以補(bǔ)充。

2. 教師對(duì)合作學(xué)習(xí)中存在的普遍的不能解決的問(wèn)題進(jìn)行集體講解。

3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請(qǐng)其他小組幫助解答,解答不了的由教師進(jìn)行解答。

為了及時(shí)了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對(duì)本節(jié)課進(jìn)行及時(shí)的鞏固,對(duì)學(xué)生進(jìn)行當(dāng)堂檢測(cè),測(cè)試完試卷上交。

(注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)

教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對(duì)性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。

反思:

數(shù)學(xué)二次根式教案(篇7)

本節(jié)課的難點(diǎn)是把分母中含有兩個(gè)二次根式的式子進(jìn)行分母有理化。分母有理化,實(shí)際上二次根式的除法與混合運(yùn)算的綜合運(yùn)用。分母有理化的過(guò)程,一般地,先確定分母的有理化因式,然后再根據(jù)分式的基本性質(zhì)把分子、分母都乘以這個(gè)有理化因式,就可使分母有理化。所以對(duì)初學(xué)者來(lái)說(shuō),這一過(guò)程容易出現(xiàn)找錯(cuò)有理化因式和計(jì)算出錯(cuò)的問(wèn)題。

1.在知識(shí)的引入上,可采取復(fù)習(xí)引入方式,比如復(fù)習(xí)有理數(shù)的混合運(yùn)算或整式的運(yùn)算。

2.在二次根式的加減、乘法混合運(yùn)算中,要注意由淺入深的層次安排,從單項(xiàng)式與多項(xiàng)式相乘、多項(xiàng)式與多項(xiàng)式到乘法公式的應(yīng)用,逐漸從數(shù)過(guò)渡到帶有字母的式。

3.在有理化因式教學(xué)中,要多出幾組題目從不同角度要求學(xué)生辨別,并及時(shí)總結(jié)。

學(xué)生特點(diǎn):實(shí)驗(yàn)班的A層學(xué)生(數(shù)學(xué)實(shí)施分層教學(xué)),主動(dòng)學(xué)習(xí)積極性高,基礎(chǔ)扎實(shí),思維活躍, ,并具有一定的獨(dú)立分析問(wèn)題,探索問(wèn)題,歸納概括問(wèn)題的能力,有較好的思考、質(zhì)疑的習(xí)慣。

教材特點(diǎn):本節(jié)課是在學(xué)習(xí)了二次根式的三個(gè)重要概念(最簡(jiǎn)二次根式、同類二次根式、分母有理化)和二次根式的有關(guān)運(yùn)算(二次根式的乘法、二次根式的除法、二次根式的加減法)基礎(chǔ)上,將加、減、乘、除、乘方、開(kāi)方運(yùn)算綜合在一起的混合運(yùn)算的學(xué)習(xí)。

鑒于學(xué)生的特點(diǎn)及教材的特點(diǎn),本節(jié)課主要采用“互動(dòng)式”的課堂教學(xué)模式及“談話式”的教學(xué)方法,以此實(shí)現(xiàn)生生互動(dòng)、師生互動(dòng)、學(xué)生與教材之間的互動(dòng)。具體說(shuō)明如下:

(一)在師生互動(dòng)方面,教師注重問(wèn)題設(shè)計(jì),注重引導(dǎo)、點(diǎn)撥及提高性總結(jié)。使學(xué)生學(xué)中有思、思中有獲。如本節(jié)課開(kāi)始,出示書(shū)中例題1:

讓學(xué)生先進(jìn)行思考,解答。然后同學(xué)說(shuō)出怎樣進(jìn)行二次根式的混合運(yùn)算。

(二)在學(xué)生與學(xué)生的互動(dòng)上,教師注重活動(dòng)設(shè)計(jì),使學(xué)生學(xué)中有樂(lè),樂(lè)中悟道。教師設(shè)計(jì)一組題目,讓學(xué)生以競(jìng)賽的形式解答,然后以記成績(jī)的方法讓其它同學(xué)說(shuō)出優(yōu)點(diǎn)(簡(jiǎn)便方法及靈活之處)與錯(cuò)誤。由于本節(jié)課主要以計(jì)算為主,對(duì)運(yùn)算法則及規(guī)律性的基礎(chǔ)知識(shí),學(xué)生很容易掌握而且從意識(shí)上認(rèn)為本節(jié)課太簡(jiǎn)單,不會(huì)很感興趣,所以為了提高學(xué)生的學(xué)習(xí)興趣及更好的抓好基礎(chǔ),提高學(xué)生的運(yùn)算能力,如此這般設(shè)計(jì)。

(三)在個(gè)體與群體的`互動(dòng)方式上,教師注重合作設(shè)計(jì),使學(xué)生學(xué)中有辯,辯中求同。如本節(jié)課中對(duì)重點(diǎn)問(wèn)題:“分母有理化”的教學(xué),出示一個(gè)題目,讓學(xué)生思考,找個(gè)別學(xué)生說(shuō)出自己的想法,然后其它同學(xué)補(bǔ)充完成。

學(xué)生的主體意識(shí)和自主能力不是生來(lái)就有的,主要靠教師的激勵(lì)和主導(dǎo),才能達(dá)到彼此互動(dòng)。正是在這一教育思想的指導(dǎo)下,追求學(xué)生的認(rèn)知活動(dòng)與情感活動(dòng)的協(xié)調(diào)發(fā)展,有效地喚起學(xué)生的主體意識(shí),在和諧、愉快的情境中達(dá)到師生互動(dòng),生生互動(dòng)?;?dòng)式教學(xué)模式的目的是讓教師樂(lè)教、會(huì)教、善教,促使學(xué)生樂(lè)學(xué)、會(huì)學(xué)、善學(xué),從而優(yōu)化課堂教學(xué)、提高教學(xué)質(zhì)量,在和諧、愉快的情景中實(shí)現(xiàn)教與學(xué)的共振。

=; =.

2.在整式乘法中,單項(xiàng)式與多項(xiàng)式相乘的法則是什么?多項(xiàng)式與多項(xiàng)式的乘法法則是什么?什么是完全平方式?分別用式子表示出來(lái)。

答:?jiǎn)雾?xiàng)式與多項(xiàng)式相乘的法則是,用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。用式子表示為

多項(xiàng)式與多項(xiàng)式相乘的法則是,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每項(xiàng),再把所得的積相加。用式子表示為

(a+b)(m+n)=am+an+bm+bn,

; 。

在實(shí)數(shù)范圍內(nèi),整式中的乘法法則及乘法公式仍然適用,運(yùn)用乘法法則及乘法公式可以進(jìn)行二次根式的混合運(yùn)算。引入新課。

在進(jìn)行二次根式的混合運(yùn)算時(shí),也有一個(gè)與分式運(yùn)算相比較的問(wèn)題,有的時(shí)候,加上團(tuán)式分解、約分等技巧,可以大大簡(jiǎn)化計(jì)算過(guò)程,這是要靈活運(yùn)用的.因此,在本節(jié)學(xué)習(xí)時(shí),可以適當(dāng)結(jié)合11.1節(jié)的內(nèi)容,復(fù)習(xí)一下在實(shí)數(shù)范圍內(nèi)分解因式的問(wèn)題,如

這種變形不是原來(lái)意義上的因式分解,否則就無(wú)法進(jìn)行到底了.可以說(shuō)是借助因式分解的方法,或具體說(shuō)成提出 ,等等.

1.掌握二次根式的混合運(yùn)算.

2.掌握乘法公式在混合運(yùn)算的應(yīng)用.

3.通過(guò)二次根式的混合運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力.

數(shù)學(xué)二次根式教案(篇8)

1.復(fù)習(xí),運(yùn)算律及乘法分式,引導(dǎo)學(xué)生口答,并強(qiáng)調(diào)數(shù)的運(yùn)算律在根式運(yùn)算中的適用,引入例題.

2.通過(guò)例題由淺入深,層層深入,既提高學(xué)生學(xué)習(xí)的興趣又激發(fā)學(xué)生求知的欲望;從例題的講解中幫助尋找解題的方法,規(guī)律及注意點(diǎn).

3.通過(guò)大量的練習(xí),以期形成自己所掌握的'知識(shí).

前面學(xué)過(guò)二次根式的加減法的簡(jiǎn)單運(yùn)算,但二次根式未必全是加減混合運(yùn)算,它同樣會(huì)出現(xiàn)二次根式的加、減、乘、除方等混合運(yùn)算那么二次根式的混合運(yùn)算的法則是什么?又將怎樣運(yùn)用它進(jìn)行化簡(jiǎn)計(jì)算,這就是本節(jié)課所要研究的問(wèn)題―二次根式的混合運(yùn)算.

二次根式的混合運(yùn)算中,應(yīng)注意運(yùn)算的次序.這是進(jìn)行二次根式混合運(yùn)算的前提條件;通過(guò)適當(dāng)?shù)貜?fù)習(xí)乘法分式,分母有理化知識(shí),然后再進(jìn)行二次根式的混合運(yùn)算的教學(xué)工作,將有助于更好地學(xué)習(xí)它;同樣為了更好地理解二次根式的混合運(yùn)算還可以將它與數(shù)的運(yùn)算律和運(yùn)算方法進(jìn)行對(duì)比,以幫助學(xué)生更好地理解并準(zhǔn)確地掌握好該知識(shí),達(dá)到事半功倍的作用.

運(yùn)算律在二次根式混合運(yùn)算中仍適用.

各種整式乘法的法則.

提問(wèn):加法的交換律、結(jié)合律各是怎樣的?乘法的交換律、結(jié)合律、分配津各是什么?

強(qiáng)調(diào)數(shù)的運(yùn)算律在根式運(yùn)算中仍適用后,可引入例題.

注:①加法與乘法的混合運(yùn)算,可分解為兩個(gè)步驟完成,一是進(jìn)行乘法運(yùn)算,二是進(jìn)行加法運(yùn)算,使難點(diǎn)分散,易于學(xué)生理解和掌握.②在運(yùn)算過(guò)程中,對(duì)于各個(gè)根式不一定要先化簡(jiǎn),而是先乘除,進(jìn)行約分,達(dá)到化簡(jiǎn)的目的,但最后結(jié)果一定要化簡(jiǎn).例如 ,沒(méi)有對(duì) 先進(jìn)行化簡(jiǎn)的必要,使計(jì)算繁瑣,而是應(yīng)先進(jìn)行乘法運(yùn)算 ,通過(guò)約分達(dá)到化簡(jiǎn)的目的.

(2) ;

注:①由學(xué)生觀察算式,找出特征:兩個(gè)數(shù)的和與這兩個(gè)數(shù)差的積;兩個(gè)數(shù)的和或差的平方,聯(lián)想乘法公式,與多項(xiàng)式的乘法相類似,二次根式的和相乘,適用乘法公式時(shí),運(yùn)用乘法公式.

②復(fù)習(xí)乘法公式,可選做幾個(gè)小題.如 , 等.

(2) .

例如, 與 , 與 .

注:互為有理化因式是指兩個(gè)代數(shù)式,其乘積不再含有二次根式.

可適當(dāng)再舉例說(shuō)明,如 與 , 與 、 與 ,但 與 就不是互為有理化因式.

(3) ; (4) ;

(5) ; (6) ;

(7) ; (8) ;

對(duì)二次根式的混合運(yùn)算與整式的混合運(yùn)算及數(shù)的混合運(yùn)算比較,要注意運(yùn)算的順序及運(yùn)算律在計(jì)算過(guò)程中的作用.

有理化因式的概念需強(qiáng)調(diào)乘積的結(jié)果不再含有二次根式.

例2……

數(shù)學(xué)二次根式教案(篇9)

一、教學(xué)過(guò)程

(一)復(fù)習(xí)提問(wèn)

1.什么叫二次根式?

2.下列各式是二次根式,求式子中的字母所滿足的條件:

(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實(shí)數(shù).

(二)二次根式的簡(jiǎn)單性質(zhì)

上節(jié)課我們已經(jīng)學(xué)習(xí)了二次根式的定義,并了解了第一個(gè)簡(jiǎn)單性質(zhì)

我們知道,正數(shù)a有兩個(gè)平方根,分別記作零的平方根是零。引導(dǎo)學(xué)生總結(jié)出,其中,就是一個(gè)非負(fù)數(shù)a的算術(shù)平方根。將符號(hào)看作開(kāi)平方求算術(shù)平方根的運(yùn)算,看作將一個(gè)數(shù)進(jìn)行平方的運(yùn)算,而開(kāi)平方運(yùn)算和平方運(yùn)算是互為逆運(yùn)算,因而有:

這里需要注意的是公式成立的條件是a≥0,提問(wèn)學(xué)生,a可以代表一個(gè)代數(shù)式嗎?

請(qǐng)分析:引導(dǎo)學(xué)生答如時(shí)才成立。

時(shí)才成立,即a取任意實(shí)數(shù)時(shí)都成立。

我們知道

如果我們把,同學(xué)們想一想是否就可以把任何一個(gè)非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方形式了.

例1計(jì)算:

分析:這個(gè)例題中的四個(gè)小題,主要是運(yùn)用公式。其中(2)、(3)、(4)題又運(yùn)用了整式乘除中學(xué)習(xí)的積的冪的運(yùn)算性質(zhì).結(jié)合第(2)小題中的,說(shuō)明,這與帶分?jǐn)?shù)。因此,以后遇到,應(yīng)寫(xiě)成,而不宜寫(xiě)成。

例2把下列非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方的形式:

(1)5;(2)11;(3)1。6;(4)0。35.

例3把下列各式寫(xiě)成平方差的形式,再分解因式:

(1)4x2—1;(2)a4—9;

(3)3a2—10;(4)a4—6a2+9.

解:(1)4x2—1

=(2x)2—12

=(2x+1)(2x—1).

(2)a4—9

=(a2)2—32

=(a2+3)(a2—3)

(3)3a2—10

(4)a4—6a2+32

=(a2)2—6a2+32

=(a2—3)2

(三)小結(jié)

1.繼續(xù)鞏固二次根式的定義,及二次根式中被開(kāi)方數(shù)的取值范圍問(wèn)題.

2.關(guān)于公式的應(yīng)用。

(1)經(jīng)常用于乘法的運(yùn)算中.

(2)可以把任何一個(gè)非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方的形式,解決在實(shí)數(shù)范圍內(nèi)因式分解等方面的問(wèn)題.

(四)練習(xí)和作業(yè)

練習(xí):

1.填空

注意第(4)題需有2m≥0,m≥0,又需有—3m≥0,即m≤0,故m=0.

2.實(shí)數(shù)a、b在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如下圖所示:

分析:通過(guò)本題滲透數(shù)形結(jié)合的思想,進(jìn)一步鞏固二次根式的定義、性質(zhì),引導(dǎo)學(xué)生分析:由于a<0,b>0,且|a|>|b|.

3.計(jì)算

二、作業(yè)

教材P.172習(xí)題11.1;A組2、3;B組2.

補(bǔ)充作業(yè):

下列各式中的字母滿足什么條件時(shí),才能使該式成為二次根式?

分析:要使這些式成為二次根式,只要被開(kāi)方式是非負(fù)數(shù)即可,啟發(fā)學(xué)生分析如下:

(1)由—|a—2b|≥0,得a—2b≤0,

但根據(jù)絕對(duì)值的性質(zhì),有|a—2b|≥0,

∴|a—2b|=0,即a—2b=0,得a=2b.

(2)由(—m2—1)(m—n)≥0,—(m2+1)(m—n)≥0

∴(m2+1)(m—n)≤0,又m2+1>0,

∴ m—n≤0,即m≤n.

說(shuō)明:本題求解較難些,但基本方法仍是由二次根式中被開(kāi)方數(shù)(式)大于或等于零列出不等式.通過(guò)本題培養(yǎng)學(xué)生對(duì)于較復(fù)雜的題的分析問(wèn)題和解決問(wèn)題的能力,并且進(jìn)一步鞏固二次根式的概念.

三、板書(shū)設(shè)計(jì)

數(shù)學(xué)二次根式教案(篇10)

本節(jié)課的重點(diǎn)是二次根式的加、減、乘、除、乘方、開(kāi)方的混合運(yùn)算及分母有理化。它是以二次根式的概念和性質(zhì)為基礎(chǔ),同時(shí)又緊密地聯(lián)系著整式、分式的運(yùn)算,也可以說(shuō)它是運(yùn)算問(wèn)題在初中階段一次總結(jié)性,提高性綜合學(xué)習(xí);二次根式的運(yùn)算和有理化的方法與技巧,能夠進(jìn)一步開(kāi)拓學(xué)生的解題思路,提高學(xué)生的解題能力。

本節(jié)課的難點(diǎn)是把分母中含有兩個(gè)二次根式的式子進(jìn)行分母有理化。分母有理化,實(shí)際上二次根式的除法與混合運(yùn)算的綜合運(yùn)用。分母有理化的過(guò)程,一般地,先確定分母的有理化因式,然后再根據(jù)分式的基本性質(zhì)把分子、分母都乘以這個(gè)有理化因式,就可使分母有理化。所以對(duì)初學(xué)者來(lái)說(shuō),這一過(guò)程容易出現(xiàn)找錯(cuò)有理化因式和計(jì)算出錯(cuò)的問(wèn)題。

1.在知識(shí)的引入上,可采取復(fù)習(xí)引入方式,比如復(fù)習(xí)有理數(shù)的混合運(yùn)算或整式的運(yùn)算。

2.在二次根式的加減、乘法混合運(yùn)算中,要注意由淺入深的層次安排,從單項(xiàng)式與多項(xiàng)式相乘、多項(xiàng)式與多項(xiàng)式到乘法公式的應(yīng)用,逐漸從數(shù)過(guò)渡到帶有字母的式。

3.在有理化因式教學(xué)中,要多出幾組題目從不同角度要求學(xué)生辨別,并及時(shí)總結(jié)。

學(xué)生特點(diǎn):實(shí)驗(yàn)班的A層學(xué)生(數(shù)學(xué)實(shí)施分層教學(xué)),主動(dòng)學(xué)習(xí)積極性高,基礎(chǔ)扎實(shí),思維活躍, ,并具有一定的獨(dú)立分析問(wèn)題,探索問(wèn)題,歸納概括問(wèn)題的能力,有較好的思考、質(zhì)疑的習(xí)慣。

教材特點(diǎn):本節(jié)課是在學(xué)習(xí)了二次根式的三個(gè)重要概念(最簡(jiǎn)二次根式、同類二次根式、分母有理化)和二次根式的有關(guān)運(yùn)算(二次根式的乘法、二次根式的除法、二次根式的加減法)基礎(chǔ)上,將加、減、乘、除、乘方、開(kāi)方運(yùn)算綜合在一起的混合運(yùn)算的學(xué)習(xí)。

鑒于學(xué)生的特點(diǎn)及教材的特點(diǎn),本節(jié)課主要采用“互動(dòng)式”的課堂教學(xué)模式及“談話式”的教學(xué)方法,以此實(shí)現(xiàn)生生互動(dòng)、師生互動(dòng)、學(xué)生與教材之間的互動(dòng)。具體說(shuō)明如下:

(一)在師生互動(dòng)方面,教師注重問(wèn)題設(shè)計(jì),注重引導(dǎo)、點(diǎn)撥及提高性總結(jié)。使學(xué)生學(xué)中有思、思中有獲。如本節(jié)課開(kāi)始,出示書(shū)中例題1:

讓學(xué)生先進(jìn)行思考,解答。然后同學(xué)說(shuō)出怎樣進(jìn)行。

(二)在學(xué)生與學(xué)生的互動(dòng)上,教師注重活動(dòng)設(shè)計(jì),使學(xué)生學(xué)中有樂(lè),樂(lè)中悟道。教師設(shè)計(jì)一組題目,讓學(xué)生以競(jìng)賽的形式解答,然后以記成績(jī)的方法讓其它同學(xué)說(shuō)出優(yōu)點(diǎn)(簡(jiǎn)便方法及靈活之處)與錯(cuò)誤。由于本節(jié)課主要以計(jì)算為主,對(duì)運(yùn)算法則及規(guī)律性的基礎(chǔ)知識(shí),學(xué)生很容易掌握而且從意識(shí)上認(rèn)為本節(jié)課太簡(jiǎn)單,不會(huì)很感興趣,所以為了提高學(xué)生的學(xué)習(xí)興趣及更好的抓好基礎(chǔ),提高學(xué)生的運(yùn)算能力,如此這般設(shè)計(jì)。

(三)在個(gè)體與群體的互動(dòng)方式上,教師注重合作設(shè)計(jì),使學(xué)生學(xué)中有辯,辯中求同。如本節(jié)課中對(duì)重點(diǎn)問(wèn)題:“分母有理化”的教學(xué),出示一個(gè)題目,讓學(xué)生思考,找個(gè)別學(xué)生說(shuō)出自己的想法,然后其它同學(xué)補(bǔ)充完成。

學(xué)生的主體意識(shí)和自主能力不是生來(lái)就有的,主要靠教師的激勵(lì)和主導(dǎo),才能達(dá)到彼此互動(dòng)。正是在這一教育思想的指導(dǎo)下,追求學(xué)生的認(rèn)知活動(dòng)與情感活動(dòng)的協(xié)調(diào)發(fā)展,有效地喚起學(xué)生的主體意識(shí),在和諧、愉快的情境中達(dá)到師生互動(dòng),生生互動(dòng)?;?dòng)式教學(xué)模式的目的是讓教師樂(lè)教、會(huì)教、善教,促使學(xué)生樂(lè)學(xué)、會(huì)學(xué)、善學(xué),從而優(yōu)化課堂教學(xué)、提高教學(xué)質(zhì)量,在和諧、愉快的情景中實(shí)現(xiàn)教與學(xué)的共振。

=; =.

2.在整式乘法中,單項(xiàng)式與多項(xiàng)式相乘的法則是什么?多項(xiàng)式與多項(xiàng)式的乘法法則是什么?什么是完全平方式?分別用式子表示出來(lái)。

答:?jiǎn)雾?xiàng)式與多項(xiàng)式相乘的法則是,用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。用式子表示為

多項(xiàng)式與多項(xiàng)式相乘的法則是,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每項(xiàng),再把所得的積相加。用式子表示為

(a+b)(m+n)=am+an+bm+bn,

; 。

在實(shí)數(shù)范圍內(nèi),整式中的乘法法則及乘法公式仍然適用,運(yùn)用乘法法則及乘法公式可以進(jìn)行。引入新課。

在進(jìn)行時(shí),也有一個(gè)與分式運(yùn)算相比較的問(wèn)題,有的時(shí)候,加上團(tuán)式分解、約分等技巧,可以大大簡(jiǎn)化計(jì)算過(guò)程,這是要靈活運(yùn)用的.因此,在本節(jié)學(xué)習(xí)時(shí),可以適當(dāng)結(jié)合11.1節(jié)的內(nèi)容,復(fù)習(xí)一下在實(shí)數(shù)范圍內(nèi)分解因式的問(wèn)題,如

這種變形不是原來(lái)意義上的因式分解,否則就無(wú)法進(jìn)行到底了.可以說(shuō)是借助因式分解的方法,或具體說(shuō)成提出 ,等等.

幼兒園教案《數(shù)學(xué)二次根式教案》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門(mén)為給您提供幼兒園教案而創(chuàng)建的網(wǎng)站。同時(shí),yjs21.com還為您精選準(zhǔn)備了數(shù)學(xué)二次根式教案專題,希望您能喜歡!

相關(guān)推薦

  • 二次根式教案十一篇 教案是教師在上課前需要準(zhǔn)備好的教學(xué)材料,每位教師都需要仔細(xì)策劃教案。教案和課件的設(shè)計(jì)質(zhì)量對(duì)教學(xué)效果起著關(guān)鍵作用。如果您對(duì)“二次根式教案”感到好奇,請(qǐng)閱讀下面精心準(zhǔn)備的資料,需要的同學(xué)請(qǐng)認(rèn)真閱讀!...
    2023-11-28 閱讀全文
  • 《二次根式》教案(合集6篇) 每個(gè)老師需要在上課前弄好自己的教案課件,所以在寫(xiě)的時(shí)候老師們就要花點(diǎn)時(shí)間咯。尤其是新入職老師,教案課件寫(xiě)好了才會(huì)課堂更加生動(dòng),什么樣的教案課件才是好課件呢?幼兒教師教育網(wǎng)小編出于你的需要,為你整理了《二次根式》教案,請(qǐng)收藏好,以便下次再讀!...
    2023-04-01 閱讀全文
  • 二次根式課件十一篇 幼兒教師教育網(wǎng)的編輯篩選出來(lái)的這篇“二次根式課件”文章絕對(duì)值得你一看,我們提供這些信息希望能夠?yàn)槟峁┮恍﹨⒖己椭笇?dǎo)。老師工作中的一部分是寫(xiě)教案課件,但教案課件不是隨便寫(xiě)寫(xiě)就可以的。做出好的教案是教師工作的基本素質(zhì)之一。...
    2024-05-17 閱讀全文
  • 二次根式說(shuō)課稿(精選11篇) 作為一名優(yōu)秀的幼兒園老師,課堂離不開(kāi)我們準(zhǔn)備的說(shuō)課稿,為了激發(fā)孩子們學(xué)習(xí)的欲望,我們會(huì)準(zhǔn)備一份生動(dòng)有趣的說(shuō)課稿,說(shuō)課稿有利于老師提前熟悉所教學(xué)的內(nèi)容,提供效率。優(yōu)秀有創(chuàng)意的幼兒園說(shuō)課稿要怎樣寫(xiě)呢?你可以讀一下小編整理的二次根式說(shuō)課稿,更多相關(guān)信息請(qǐng)繼續(xù)關(guān)注本網(wǎng)站。一、教學(xué)目標(biāo):知識(shí)與技能:1.了解二...
    2023-05-16 閱讀全文
  • 最新二次根式的乘法課件(分享4篇) 教案課件是每個(gè)老師在開(kāi)學(xué)前需要準(zhǔn)備的東西,每個(gè)老師都要認(rèn)真寫(xiě)教案課件。教案是激發(fā)學(xué)生求知欲的有效方式??匆?jiàn)必讀的“二次根式的乘法課件”相關(guān)精品文章分享給您,強(qiáng)烈建議您將此頁(yè)面收藏以備不時(shí)之需!...
    2024-07-21 閱讀全文

教案是教師在上課前需要準(zhǔn)備好的教學(xué)材料,每位教師都需要仔細(xì)策劃教案。教案和課件的設(shè)計(jì)質(zhì)量對(duì)教學(xué)效果起著關(guān)鍵作用。如果您對(duì)“二次根式教案”感到好奇,請(qǐng)閱讀下面精心準(zhǔn)備的資料,需要的同學(xué)請(qǐng)認(rèn)真閱讀!...

2023-11-28 閱讀全文

每個(gè)老師需要在上課前弄好自己的教案課件,所以在寫(xiě)的時(shí)候老師們就要花點(diǎn)時(shí)間咯。尤其是新入職老師,教案課件寫(xiě)好了才會(huì)課堂更加生動(dòng),什么樣的教案課件才是好課件呢?幼兒教師教育網(wǎng)小編出于你的需要,為你整理了《二次根式》教案,請(qǐng)收藏好,以便下次再讀!...

2023-04-01 閱讀全文

幼兒教師教育網(wǎng)的編輯篩選出來(lái)的這篇“二次根式課件”文章絕對(duì)值得你一看,我們提供這些信息希望能夠?yàn)槟峁┮恍﹨⒖己椭笇?dǎo)。老師工作中的一部分是寫(xiě)教案課件,但教案課件不是隨便寫(xiě)寫(xiě)就可以的。做出好的教案是教師工作的基本素質(zhì)之一。...

2024-05-17 閱讀全文

作為一名優(yōu)秀的幼兒園老師,課堂離不開(kāi)我們準(zhǔn)備的說(shuō)課稿,為了激發(fā)孩子們學(xué)習(xí)的欲望,我們會(huì)準(zhǔn)備一份生動(dòng)有趣的說(shuō)課稿,說(shuō)課稿有利于老師提前熟悉所教學(xué)的內(nèi)容,提供效率。優(yōu)秀有創(chuàng)意的幼兒園說(shuō)課稿要怎樣寫(xiě)呢?你可以讀一下小編整理的二次根式說(shuō)課稿,更多相關(guān)信息請(qǐng)繼續(xù)關(guān)注本網(wǎng)站。一、教學(xué)目標(biāo):知識(shí)與技能:1.了解二...

2023-05-16 閱讀全文

教案課件是每個(gè)老師在開(kāi)學(xué)前需要準(zhǔn)備的東西,每個(gè)老師都要認(rèn)真寫(xiě)教案課件。教案是激發(fā)學(xué)生求知欲的有效方式??匆?jiàn)必讀的“二次根式的乘法課件”相關(guān)精品文章分享給您,強(qiáng)烈建議您將此頁(yè)面收藏以備不時(shí)之需!...

2024-07-21 閱讀全文