作為一名教學(xué)工作者,總歸要編寫教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。那么寫教案需要注意哪些問題呢?以下是小編為大家整理的《一元二次方程》的優(yōu)秀教案(通用11篇),僅供參考,大家一起來看看吧。
一、復(fù)習(xí)目標(biāo):
1、能說出一元二次方程及其相關(guān)概念,;
2、能熟練應(yīng)用配方法、公式法、分解因式法解簡(jiǎn)單的一元二次方程,并在解一元二次方程的過程中體會(huì)轉(zhuǎn)化等數(shù)學(xué)思想。
3、能靈活應(yīng)用一元二次方程的知識(shí)解決相關(guān)問題,能根據(jù)具體問題的實(shí)際意義檢驗(yàn)結(jié)果的合理性,進(jìn)一步培養(yǎng)學(xué)生分析問題、解決問題的意識(shí)和能力。
二、復(fù)習(xí)重難點(diǎn):
重點(diǎn):一元二次方程的解法和應(yīng)用.
難點(diǎn):應(yīng)用一元二次方程解決實(shí)際問題的方法.
三、知識(shí)回顧:
1、一元二次方程的定義:
2、一元二次方程的常用解法有:
配方法的一般過程是怎樣的?
3、一元二次方程在生活中有哪些應(yīng)用?請(qǐng)舉例說明。
4、利用方程解決實(shí)際問題的關(guān)鍵是。
在解決實(shí)際問題的過程中,怎樣判斷求得的結(jié)果是否合理?請(qǐng)舉例說明。
四、例題解析:
例1、填空
1、當(dāng)m時(shí),關(guān)于x的方程(m-1)+5+mx=0是一元二次方程.
2、方程(m2-1)x2+(m-1)x+1=0,當(dāng)m時(shí),是一元二次方程;當(dāng)m時(shí),是一元一次方程.
3、將一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.
4、用配方法解方程x2+8x+9=0時(shí),應(yīng)將方程變形為( )
A.(x+4)2=7B.(x+4)2=-9
C.(x+4)2=25D.(x+4)2=-7
學(xué)習(xí)內(nèi)容學(xué)習(xí)隨記
例2、解下列一元二次方程
(1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)
(3)(x+1)(2-x)=1(選擇適當(dāng)?shù)姆椒ń?
例3、1、新竹文具店以16元/支的價(jià)格購(gòu)進(jìn)一批鋼筆,根據(jù)市場(chǎng)調(diào)查,如果以20元/支的價(jià)格銷售,每月可以售出200支;而這種鋼筆的售價(jià)每上漲1元就少賣10支.現(xiàn)在商店店主希望銷售該種鋼筆月利潤(rùn)為1350元,則該種鋼筆該如何漲價(jià)?此時(shí)店主該進(jìn)貨多少?
2、如圖,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,點(diǎn)P、Q同時(shí)由A、B兩點(diǎn)出發(fā)分別沿AC,BC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度都是1m/s,幾秒后△PCQ的面積為Rt△ACB面積的一半?
一、教學(xué)目標(biāo)
知識(shí)與技能
(1)理解一元二次方程的意義。
(2)能熟練地把一元二次方程整理成一般形式并能指出它的二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)及常數(shù)項(xiàng)。
過程與方法
在分析、揭示實(shí)際問題的數(shù)量關(guān)系并把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型(一元二次方程)的過程中,使學(xué)生感受方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的工具,增加對(duì)一元二次方程的感性認(rèn)識(shí)。
情感、態(tài)度與價(jià)值觀
通過探索建立一元二次方程模型的過程,使學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),增進(jìn)對(duì)方程的認(rèn)識(shí),發(fā)展分析問題、解決問題的能力。
二、教材分析:教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn):經(jīng)歷建立一元二次方程模型的過程,掌握一元二次方程的一般形式。
難點(diǎn):準(zhǔn)確理解一元二次方程的意義。
三、教學(xué)方法
創(chuàng)設(shè)情境——主體探究——合作交流——應(yīng)用提高
四、學(xué)案
(1)預(yù)學(xué)檢測(cè)
3x-5=0是什么方程?一元一次方程的定義是怎樣的?其一般形式是怎樣的?
五、教學(xué)過程
(一)創(chuàng)設(shè)情境、導(dǎo)入新
(1)自學(xué)本P2—P3并完成書本
(2)請(qǐng)學(xué)生分別回答書本內(nèi)容再
(二)主體探究、合作交流
(1)觀察下列方程:
(35-2x)2=9004x2-9=03y2-5y=7
它們有什么共同點(diǎn)?它們分別含有幾個(gè)未知數(shù)?它們的左邊分別是未知數(shù)的幾次幾項(xiàng)式?
(2)一元二次方程的概念與一般形式?
如果一個(gè)方程通過移項(xiàng)可以使右邊為0,而左邊是只含一個(gè)未知數(shù)的二次多項(xiàng)式,那么這樣的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知數(shù)a≠0),其中,a、b、c分別稱為二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng),如x2-x=56
(三)應(yīng)用遷移、鞏固提高
例1:根據(jù)一元二次方程定義,判斷下列方程是否為一元二次方程?為什么?
x2-x=13x(x-1)=5(x+2)x2=(x-1)2
例2:將方程3x(x-1)=5(x+2)化成一元二次方程的.一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
解:去括號(hào)得
3x2-3x=5x+10
移項(xiàng),合并同類項(xiàng),得一元二次方程的一般形式
3x2-8x-10=0
其中二次項(xiàng)系數(shù)為3,一次項(xiàng)系數(shù)為-8,常數(shù)項(xiàng)為-10。
學(xué)生練習(xí):書本P4練習(xí)
(四)總結(jié)反思拓展升華
總結(jié)
1.一元二次方程的定義是怎樣的?
2.一元二次方程的一般形式為ax2+bx+c=0(a≠0),一元二次方程的項(xiàng)及系數(shù)都是根據(jù)一般式定義的,這與多項(xiàng)式中的項(xiàng)、次數(shù)及其系數(shù)的定義是一致的。
3.在實(shí)際問題轉(zhuǎn)化為一元二次方程數(shù)學(xué)模型的過程中,體會(huì)學(xué)習(xí)一元二次方程的必要性和重要性。
反思
方程ax3+bx2+cx+d=0是關(guān)于x的一元二次方程的條是a=0且b≠0,是一元一次方程的條是a=b=0且c≠0。
(五)布置作業(yè)
(1)必做題P4習(xí)題1.1A組1.2
(2)選做題: 若xm-2=9是關(guān)于x的一元二次方程,試求代數(shù)式(m2-5m+6)÷(m2-2m)的值。
一、教學(xué)目標(biāo)
【知識(shí)與技能】
掌握應(yīng)用因式分解的方法,會(huì)正確求一元二次方程的解。
【過程與方法】
通過利用因式分解法將一元二次方程轉(zhuǎn)化成兩個(gè)一元一次方程的過程,體會(huì)“等價(jià)轉(zhuǎn)化”“降次”的數(shù)學(xué)思想方法。
【情感態(tài)度價(jià)值觀】
通過探討一元二次方程的解法,體會(huì)“降次”化歸的思想,逐步養(yǎng)成主動(dòng)探究的精神與積極參與的.意識(shí)。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
運(yùn)用因式分解法求解一元二次方程。
【教學(xué)難點(diǎn)】
發(fā)現(xiàn)與理解分解因式的方法。
三、教學(xué)過程
(一)導(dǎo)入新課
復(fù)習(xí)回顧:和學(xué)生一起回憶平方差、完全平方公式,以及因式分解的常用方法。
(二)探究新知
問題1:一個(gè)數(shù)的平方與這個(gè)數(shù)的3倍有可能相等嗎?如果相等,這個(gè)數(shù)是幾?你是怎樣求出來的?
學(xué)生小組討論,探究后,展示三種做法。
問題:小穎用的什么法?——公式法
小明的解法對(duì)嗎?為什么?——違背了等式的性質(zhì),x可能是零。
小亮的解法對(duì)嗎?其依據(jù)是什么——兩個(gè)數(shù)相乘,如果積等于零,那么這兩個(gè)數(shù)中至少有一個(gè)為零。
問題2:學(xué)生探討哪種方法對(duì),哪種方法錯(cuò);錯(cuò)的原因在哪?你會(huì)用哪種方法簡(jiǎn)便]
師引導(dǎo)學(xué)生得出結(jié)論:
如果a·b=0,那么a=0或b=0
(如果兩個(gè)因式的積為零,則至少有一個(gè)因式為零,反之,如果兩個(gè)因式有一個(gè)等于零,它們的積也就等于零。)
“或”有下列三層含義
①a=0且b≠0
②a≠0且b=0
③a=0且b=0
問題3:
(1)什么樣的一元二次方程可以用因式分解法來解?
(2)用因式分解法解一元二次方程,其關(guān)鍵是什么?
(3)用因式分解法解一元二次方程的理論依據(jù)是什么?
(4)用因式分解法解一元二方程,必須要先化成一般形式嗎?
因式分解法:當(dāng)一元二次方程的一邊是0,而另一邊易于分解成兩個(gè)一次因式的乘積時(shí),我們就可以用分解因式的方法求解。這種用分解因式解一元二次方程的方法稱為因式分解法。
老師提示:
1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;
2.關(guān)鍵是熟練掌握因式分解的知識(shí);
3.理論依舊是“如果兩個(gè)因式的積等于零,那么至少有一個(gè)因式等于零?!?/p>
(三)鞏固提高
1.用分解因式法解下列方程嗎?
總結(jié):右化零,左分解,兩因式,各求解。
(四)小結(jié)作業(yè)
用因式分解法求解一元二次方程的步驟:
1.方程化為一般形式;
2.方程左邊因式分解;
3.至少一個(gè)一次因式等于零得到兩個(gè)一元一次方程;
4.兩個(gè)一元一次方程的解就是原方程的解。
一、教學(xué)目標(biāo)
1、知識(shí)與技能目標(biāo):認(rèn)識(shí)一元二次方程,并能分析簡(jiǎn)單問題中的數(shù)量關(guān)系列出一元二次方程。
2、過程與方法:學(xué)生通過觀察與模仿,建立起對(duì)一元二次方程的感性認(rèn)識(shí),獲得對(duì)代數(shù)式的初步經(jīng)驗(yàn),鍛煉抽象思維能力。
3、情感態(tài)度與價(jià)值觀:學(xué)生在獨(dú)立思考的過程中,能將生活中的經(jīng)驗(yàn)與所學(xué)的知識(shí)結(jié)合起來,形成實(shí)事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨(dú)立思考的習(xí)慣。
二、教學(xué)重難點(diǎn)
重點(diǎn):理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會(huì)將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
難點(diǎn):找對(duì)題目中的數(shù)量關(guān)系從而列出一元二次方程。
三、教學(xué)過程
(一)導(dǎo)入新課
師:同學(xué)們我們就要開始學(xué)習(xí)一元二次方程了,在開始講新課之前,我們首先來看一看第二十二章的這張圖片,圖片上有一個(gè)銅雕塑,有哪位同學(xué)能告訴我這是誰(shuí)嗎?
生:老師,這是雷鋒叔叔。
師:對(duì),這是遼寧省撫順市雷鋒紀(jì)念館前的.雷鋒雕像,雷鋒叔叔一生樂于助人,奉獻(xiàn)了自己方便了他人,所以即使他去世了,也活在人們心中,所以人們才給他做一個(gè)雕塑紀(jì)念他,同學(xué)們是不是也要向雷鋒叔叔學(xué)習(xí)啊?
生:是的老師。
師:可是原來紀(jì)念館的工作人員在建造這座雕像的時(shí)候曾經(jīng)遇到了一個(gè)問題,也就是圖片下面的這個(gè)問題,同學(xué)們想不想為他們解決這個(gè)問題呢?
生:想。
師:同學(xué)們也都很樂于助人,好那我們看一看這個(gè)問題是什么,然后帶著這個(gè)問題開始我們今天的學(xué)習(xí)一元二次方程。
(二)新課教學(xué)
師:我們來看到這個(gè)題目,要設(shè)計(jì)一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計(jì)為全高?同學(xué)們用AC來表示上部,BC來表示下部先簡(jiǎn)單列一下這個(gè)比例關(guān)系,待會(huì)老師下去看看同學(xué)們的式子。
(下去巡視)
(三)小結(jié)作業(yè)
師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。
四、板書設(shè)計(jì)
五、教學(xué)反思
教學(xué)目標(biāo)
1、了解整式方程和一元二次方程的概念;
2、知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式,一元二次方程。
3、通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):一元二次方程的概念和它的一般形式。
難點(diǎn):對(duì)一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
教學(xué)建議
教材分析:
1)知識(shí)結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。
2)重點(diǎn)、難點(diǎn)分析
理解一元二次方程的定義:
是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語(yǔ)句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語(yǔ)句,就要對(duì)方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會(huì)有不同的結(jié)果。
教學(xué)目的
1、了解整式方程和一元二次方程的`概念;
2、知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。
3、通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn)和難點(diǎn):
重點(diǎn):
1、一元二次方程的有關(guān)概念。
2、會(huì)把一元二次方程化成一般形式。
難點(diǎn):
一元二次方程的含義。
教學(xué)過程設(shè)計(jì)
一、引入新課
引例:剪一塊面積是150cm2的長(zhǎng)方形鐵片,使它的長(zhǎng)比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:
1、要解決這個(gè)問題,就要求出鐵片的長(zhǎng)和寬。
2、這個(gè)問題用什么數(shù)學(xué)方法解決?(間接計(jì)算即列方程解應(yīng)用題。
3、讓學(xué)生自己列出方程(x(x十5)=150)
深入引導(dǎo):方程x(x十5)=150有人會(huì)解嗎?你能叫出這個(gè)方程的名字嗎?
二、新課
1、從上面的引例我們有這樣一個(gè)感覺:在解決日常生活的計(jì)算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實(shí)上初中代數(shù)研究的主要對(duì)象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對(duì)方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2、什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個(gè)方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點(diǎn)來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個(gè)整式方程,但是一個(gè)整式方程未必就是一個(gè)一元二次方程、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做一元二次方程、(板書一元二次方程的定義)
3、強(qiáng)化一元二次方程的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:
(2)x2=4
(3)(x十3)(3x·4)=(x十2)2;
(4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個(gè)方程是否是一元二次方程不能只看表面、而是能化簡(jiǎn)必須先化簡(jiǎn)、然后再查看這個(gè)方程未知數(shù)的最高次數(shù)是否是2。
4、一元二次方程概念的延伸
提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?
引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項(xiàng)的情況,啟發(fā)學(xué)生運(yùn)用字母,找到一元二次方程的一般形式
ax2+bx+c=0(a≠0)
1)、提問a=0時(shí)方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2)、講解方程中ax2、bx、c各項(xiàng)的名稱及a、b的系數(shù)名稱、
3)、強(qiáng)調(diào):一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中一次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強(qiáng)化概念(課本P6)
1、說出下列一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):
(1)x2十3x十2=O(2)x2—3x十4=0;(3)3x2-5=0
(4)4x2十3x—2=0;(5)3x2—5=0;(6)6x2—x=0。
2、把下列方程先化成二元二次方程的一般形式,再寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):
(1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的最高次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中二次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個(gè)一元二次方程中一二次項(xiàng)、一次項(xiàng)、常數(shù)項(xiàng):二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、
課外作業(yè):略
教學(xué)目標(biāo):
1、經(jīng)歷抽象一元二次方程概念的過程,進(jìn)一步體會(huì)是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型
2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能將一元二次方程轉(zhuǎn)化為一般形式,正確識(shí)別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng)。
教學(xué)重點(diǎn)
1、一元二次方程及其它有關(guān)的概念。
2、利用實(shí)際問題建立一元二次方程的數(shù)學(xué)模型。
教學(xué)難點(diǎn)
1、建立一元二次方程實(shí)際問題的數(shù)學(xué)模型.
2、把一元二次方程化為一般形式
教學(xué)方法:指導(dǎo)自學(xué),自主探究
課時(shí):第一課時(shí)
教學(xué)過程:
(學(xué)生通過導(dǎo)學(xué)提綱,了解本節(jié)課自己應(yīng)該掌握的內(nèi)容)
一、自主探索:(學(xué)生通過自學(xué),經(jīng)歷思考、討論、分析的過程,最終形成一元二次方程及其有關(guān)概念)
1、請(qǐng)認(rèn)真完成課本P39—40議一議以上的內(nèi)容;化簡(jiǎn)上述三個(gè)方程.。
2、你發(fā)現(xiàn)上述三個(gè)方程有什么共同特點(diǎn)?
你能把這些特點(diǎn)用一個(gè)方程概括出來嗎?
3、請(qǐng)同學(xué)看課本40頁(yè),理解記憶一元二次方程的概念及有關(guān)概念
你覺得理解這個(gè)概念要掌握哪幾個(gè)要點(diǎn)?你還掌握了什么?
二、學(xué)以致用:(通過練習(xí),加深學(xué)生對(duì)一元二次方程及其有關(guān)概念的理解與把握)
1、下列哪些是一元二次方程?哪些不是?
①②③
④x2+2x-3=1+x2 ⑤ax2+bx+c=0
2、判斷下列方程是不是關(guān)于x的一元二次方程,如果是,寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)
3、若關(guān)于x的方程(k-3)x2+2x-1=0是一元二次方程,則k的值是多少?
4、關(guān)于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么條件下它是一元二次方程?在什么條件下它是一元一次方程?
5、以-2、3、0三個(gè)數(shù)作為一個(gè)一元二次方程的系數(shù)和常數(shù)項(xiàng),請(qǐng)你寫出滿足條件的不同的一元二次方程?
三、反思:(學(xué)生,進(jìn)一步加深本節(jié)課所學(xué)內(nèi)容)
這節(jié)課你學(xué)到了什么?
四、自查自?。海ㄍㄟ^當(dāng)堂小測(cè),及時(shí)發(fā)現(xiàn)問題,及時(shí)應(yīng)對(duì))
1、下列方程中是一元二次方程的有()A、1個(gè)B、2個(gè) C、3個(gè)D、4個(gè)
(1)(2)(3)(4)(5)(6)2、將方程-5x2+1=6x化為一般形式為____________________.其二次項(xiàng)是_________,系數(shù)為_______,一次項(xiàng)系數(shù)為______,常數(shù)項(xiàng)為______。
3、關(guān)于x的方程(m2-4)x2+(m+2)x+2m+3=0,當(dāng)m__________時(shí),是一元二次方程;當(dāng)m__________時(shí),是一元一次方程.
作業(yè):必做題:習(xí)題7.1
選做題:(挑戰(zhàn)自我)p41隨堂練習(xí)
1、已知關(guān)于的方程是一元二次方程,則為何值?
2、.當(dāng)m為何值時(shí),方程(m+1)x+1+27mx+5=0是關(guān)x于的一元二次方程?
3、關(guān)于的一元二次方程(m-1)x2+x+m2-1=0有一根為,則的值多少?
4、某校為了美化校園,準(zhǔn)備在一塊長(zhǎng)32米,寬20米的長(zhǎng)方形場(chǎng)地上修筑若干條道路,余下部分作草坪,并請(qǐng)全校同學(xué)參與設(shè)計(jì),現(xiàn)在有兩位學(xué)生各設(shè)計(jì)了一種(如圖),根據(jù)兩種設(shè)計(jì)各列出方程,求圖中道路的寬分別是多少,使圖(1),(2)的草坪面積為540米2.?
(1)(2)
板書設(shè)計(jì):一元二次方程
定義:一個(gè)未知數(shù)整式方程可以化為
一般形式ax2+bx+c=0(a、b、c為常數(shù),a≠0)
二次項(xiàng)一次項(xiàng)常數(shù)項(xiàng)
系數(shù)為a系數(shù)為b
教學(xué)反思
這次我參加了區(qū)里組織的優(yōu)質(zhì)
課比賽,這次的優(yōu)質(zhì)課采用市里要求的1/3模式,這對(duì)于我們來說具有一定的挑戰(zhàn)性。所謂“1/3模式”,就是把課堂教學(xué)時(shí)間大致分為3個(gè)部分,1/3的時(shí)間個(gè)人自主學(xué)習(xí),1/3的時(shí)間小組合作學(xué)習(xí),1/3的時(shí)間全班交流討論。在1/3模式中,整個(gè)教學(xué)過程由教師和學(xué)生共同參與,每個(gè)環(huán)節(jié)1/3的時(shí)間只是大致的劃分,可根據(jù)學(xué)習(xí)內(nèi)容靈活安排。這就對(duì)教師提出了較高的要求。
首先要準(zhǔn)備好學(xué)案。學(xué)案就是學(xué)生學(xué)習(xí)的依據(jù)。在學(xué)案里,教師要提出明確的學(xué)習(xí)要求。學(xué)習(xí)要求可包括以下方面:完成學(xué)習(xí)任務(wù)的時(shí)間、學(xué)習(xí)內(nèi)容的范圍、完成學(xué)習(xí)任務(wù)所要達(dá)到的程度、自主學(xué)習(xí)成果展現(xiàn)的形式等。這就要求教師要提前考慮周全,對(duì)于學(xué)生學(xué)習(xí)的要求要一次性提出,內(nèi)容上有梯度。學(xué)生自主學(xué)習(xí)時(shí),教師要深入學(xué)生當(dāng)中,觀察學(xué)生的學(xué)習(xí)狀況,檢查學(xué)習(xí)任務(wù)完成的情況,有針對(duì)性的指導(dǎo)和幫助教師對(duì)自主學(xué)習(xí)方法和途徑的指導(dǎo)要適度,既要滿足學(xué)生完成學(xué)習(xí)任務(wù)的需要,又不能擠占學(xué)生自主探究的空間
其次,學(xué)習(xí)氛圍是合作學(xué)習(xí)成功的關(guān)鍵之一,教師要營(yíng)造安全的心理環(huán)境、充裕的時(shí)空環(huán)境、熱情的幫助環(huán)境、真誠(chéng)的激勵(lì)環(huán)境,只就要求教師在語(yǔ)言上也要有較高水平,會(huì)發(fā)動(dòng)學(xué)生,會(huì)調(diào)動(dòng)學(xué)生的積極性,讓課堂氣氛活躍起來,讓學(xué)生充分發(fā)揮自己的水平。
再是,由于課堂上主要是以學(xué)生為主。這就要求教師盡量少講,要充當(dāng)好組織者、引導(dǎo)者、傾聽者的角色,不要急于發(fā)表自己的觀點(diǎn),只要學(xué)生能講的教師就不要講,要避免因?yàn)榻處煶尸F(xiàn)自己的觀點(diǎn)而打破學(xué)生的討論。學(xué)生說完的東西,如果沒有問題,教師就不要重復(fù)。教師對(duì)學(xué)習(xí)內(nèi)容要點(diǎn)的講解要有的放矢,能起到畫龍點(diǎn)睛的作用。要在學(xué)生原有的水平上進(jìn)行提升,有助于學(xué)生加深對(duì)知識(shí)的理解。
我們只有在教學(xué)中不斷的學(xué)習(xí),不斷的改進(jìn)自己,才能保證我們的課堂很精彩,是名副其實(shí)的優(yōu)質(zhì)課。
學(xué)情分析
學(xué)生在七年級(jí)和八年級(jí)已經(jīng)學(xué)習(xí)了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基礎(chǔ)上本節(jié)課將從實(shí)際問題入手,抽象出一元二次方程的概念及一元二次方程的一般形式。
教學(xué)目標(biāo):
知識(shí)技能
1、理解一元二次方程的概念.
2、掌握一元二次方程的一般形式,正確識(shí)別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
過程與方法
1、通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題及解決問題的能力.
2、通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對(duì)概念理解的完整性和深刻性.
情感態(tài)度
1、培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、自主學(xué)習(xí)和合作交流的意識(shí).
2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會(huì)學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識(shí).
教學(xué)重難點(diǎn)
重點(diǎn):一元二次方程的概念及一般形式.
難點(diǎn):探求問題中的等量關(guān)系,建立方程模型
教學(xué)突破:
1、方程是否為一元二次方程,主要看是否滿足三個(gè)條件:
(1)是整式方程;
(2)只含有一個(gè)未知數(shù);
(3)未知數(shù)的最高次數(shù)為2次。
2、一元二次方程的各項(xiàng)系數(shù)均是相對(duì)于一般形式而言的,因此在教學(xué)中應(yīng)強(qiáng)調(diào):若要確定各項(xiàng)的系數(shù),應(yīng)先將方程化為一般形式。另外,一定要注意符號(hào),尤其符號(hào)不能漏掉。
教學(xué)過程設(shè)計(jì)
一、創(chuàng)設(shè)情境引入新課
問題1:
在長(zhǎng)30米,寬20米的矩形場(chǎng)地上,修筑同樣寬的兩條道路,余下的部分作為耕地,要使耕地的面積為500平方米,求道路的寬度?.
通過多媒體演示,把文字轉(zhuǎn)化為圖形,幫助學(xué)生理解題意,從而由學(xué)生獨(dú)立思考,列出滿足條件的方程.
問題2:
參加一次商品交易會(huì)的每?jī)杉夜局g都簽訂一份合同,所有公司共簽訂了45份合同,求有多少家參加商品交易會(huì)?
二、啟發(fā)探究獲得新知
1、一元二次方程的概念:經(jīng)整理后,,只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程,叫做一元二次方程。
說明:(1)由一問題得到2個(gè)方程,由學(xué)生觀察歸納這2個(gè)方程的特征,給出名稱并類比一元一次方程的定義,得出一元二次方程的定義.
(2)一元二次方程必須同時(shí)具備三個(gè)特征:a)整式方程; b)只含有一個(gè)未知數(shù); c)未知數(shù)的'最高次數(shù)為2.
眼疾口快:
請(qǐng)搶答下列各式是否為一元二次方程:
(4)5x+3=10
說明:此環(huán)節(jié)采取搶答的形式,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性.
2、一元二次方程的一般式:
試一試:
例1、下面給出了某個(gè)方程的幾個(gè)特點(diǎn):
它的一般形式為
(2)它的二次項(xiàng)系數(shù)為5;
(3)常數(shù)項(xiàng)是一次項(xiàng)系數(shù)的倒數(shù)的相反數(shù)。
請(qǐng)你寫出一個(gè)符合條件的的一元二次方程
說明:此題設(shè)置的目的在于加深學(xué)生對(duì)一般形式的理解
三、運(yùn)用新知體驗(yàn)成功
小試牛刀:
1.將下列方程化成一元二次方程的一般形式,并
寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng).
(1)5x 2 -1= 4x;
(2)4x 2 = 81;
(3)4x(x+2)=25;
(4)(3x – 2)( x + 1 ) = 8x - 3
說明:鞏固練習(xí)學(xué)生整理一般形式的方法,并準(zhǔn)確找出各項(xiàng)系數(shù).此環(huán)節(jié)可找學(xué)生口答結(jié)果.另讓學(xué)生落實(shí)將剛才教師板書的整理一般形式的過程,再次突出本節(jié)課的重點(diǎn)內(nèi)容。
2.(1)小區(qū)2013年底擁有家庭轎車64輛,2015年底家庭轎車的擁有輛達(dá)到100輛,若該小區(qū)這兩年的年平均增長(zhǎng)率相同,求年平均增長(zhǎng)率x;
(2)一個(gè)矩形的長(zhǎng)比寬多2厘米,面積是100平方厘米,求矩形的長(zhǎng)x;
(3)要組織一次籃球聯(lián)賽,每?jī)申?duì)之間都賽一場(chǎng),計(jì)劃安排21場(chǎng)比賽,有多少隊(duì)參加?
說明:這幾題有在實(shí)際生活中應(yīng)用的意義,以此題為例,教師板書整理一元二次方程的過程,讓學(xué)生學(xué)會(huì)如何整理任意一元二次方程的一般形式,并能準(zhǔn)確找到各項(xiàng)系數(shù).
教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注:
(1)由一個(gè)學(xué)生列出方程,并解釋解題方法,教師進(jìn)行引導(dǎo),點(diǎn)評(píng),引起其他學(xué)生的關(guān)注,認(rèn)同.
(2)教師在歸納點(diǎn)評(píng)過程中,應(yīng)注意把兩隊(duì)只打一場(chǎng)比賽解釋清楚,以便學(xué)生理解題意.
(3)整理一般形式后,教師應(yīng)強(qiáng)調(diào)整理過程中應(yīng)用到的等式變形方法,如去括號(hào),移項(xiàng),合并同類項(xiàng),去分母等.
(4)讓學(xué)生指出各項(xiàng)系數(shù)時(shí),教師強(qiáng)調(diào)系數(shù)須帶符合.
例2、當(dāng)m取何值時(shí),方程(m-2)xm2-2+3mx=5
是關(guān)于x的一元二次方程?
此題由學(xué)生思考,討論,并由學(xué)生給出結(jié)果并進(jìn)行解釋.
說明:此活動(dòng)過程中,教師應(yīng)重點(diǎn)關(guān)注:
(1)此題目在上一題的基礎(chǔ)上繼續(xù)加大難度,第(1)題須強(qiáng)調(diào)先進(jìn)行整理,再考慮二次項(xiàng)系數(shù)是否為零;第(2)題須先求出m值,再代入二次項(xiàng)系數(shù)中,驗(yàn)證是否為0,得到結(jié)果.
(2)學(xué)生解答過程中,教師把整理的一般形式書寫在黑板上,以便全體學(xué)生理解.
(2)學(xué)生解答過程中,教師把整理的一般形式書寫在黑板上,以便全體學(xué)生理解.
四、歸納小結(jié)拓展提高
1、問題:
本節(jié)課你又學(xué)會(huì)了哪些新知識(shí)?
說明:小結(jié)反思中,不同學(xué)生有不同的體會(huì),要尊重學(xué)生的個(gè)體差異,激發(fā)學(xué)生主動(dòng)參與意識(shí),.為每個(gè)學(xué)生都創(chuàng)造了數(shù)學(xué)活動(dòng)中獲得活動(dòng)經(jīng)驗(yàn)的機(jī)會(huì)。
2、還有什么疑惑?
五、布置作業(yè):
教科書第21.1第1、2、3題.
板書設(shè)計(jì)
21.1一元二次方程
一元二次方程的概念:方程兩邊都是整式,并且只含有一個(gè)未知數(shù),未知數(shù)的最高次數(shù)是2的方程叫一元二次方程。
一元二次方程的一般形式
a表示二次項(xiàng)系數(shù),b表示一次項(xiàng)系數(shù),c表示常數(shù)項(xiàng)。
例1.例1、下面給出了某個(gè)方程的幾個(gè)特點(diǎn):
它的一般形式為
(2)它的二次項(xiàng)系數(shù)為5;
(3)常數(shù)項(xiàng)是一次項(xiàng)系數(shù)的倒數(shù)的相反數(shù)。
請(qǐng)你寫出一個(gè)符合條件的的一元二次方程
例2、當(dāng)m取何值時(shí),方程(m-2)xm2-2+3mx=5
是關(guān)于x的一元二次方程?
學(xué)生學(xué)習(xí)活動(dòng)評(píng)價(jià)設(shè)計(jì):
關(guān)注學(xué)生在學(xué)習(xí)活動(dòng)中的表現(xiàn),如能否積極的參加活動(dòng),能否從不同的角度去思考問題,等等,而不是僅局限于學(xué)生列方程,判斷學(xué)生各項(xiàng)系數(shù)的正確與否。
重視學(xué)生應(yīng)用新知解決問題的能力的評(píng)價(jià),鼓勵(lì)學(xué)生使用數(shù)學(xué)語(yǔ)言,有條理地表達(dá)自己的思考過程,鼓勵(lì)大膽質(zhì)疑和創(chuàng)新。
一、學(xué)生知識(shí)狀況分析
學(xué)生已經(jīng)學(xué)習(xí)了一元二次方程及其解法,對(duì)于方程的解及解方程并不陌生,實(shí)際問題的應(yīng)用,有些抽象,雖然學(xué)生在七、八年級(jí)已經(jīng)進(jìn)行了有關(guān)的訓(xùn)練,但還是有一定的難度。
本節(jié)內(nèi)容針對(duì)的學(xué)生是才進(jìn)入九年級(jí)的學(xué)生,他們已經(jīng)具備了一定的抽象思維和建模能力,也具備一定的生活經(jīng)驗(yàn)和初步的解一元二次方程的經(jīng)驗(yàn)。
二、教學(xué)任務(wù)分析
本節(jié)課的主要是發(fā)展學(xué)生抽象思維,強(qiáng)化學(xué)生的應(yīng)用意識(shí),使學(xué)生能通過抽象思維將一個(gè)應(yīng)用題抽象成一元二次方程使問題得以解決,這也是方程教學(xué)的重要任務(wù)。但學(xué)生抽象意識(shí)和能力的發(fā)展不是自發(fā)的,需要通過大量的應(yīng)用實(shí)例,在實(shí)際問題的解決中讓學(xué)生感受到其廣泛應(yīng)用,并在具體應(yīng)用中增強(qiáng)學(xué)生的應(yīng)用能力。因此,本節(jié)教學(xué)中需要選用大量的實(shí)際問題,通過列方程解決問題,并且在問題解決過程中,促進(jìn)學(xué)生分析問題、解決問題意識(shí)和能力的提高以及抽象思維的初步形成。顯然,這個(gè)任務(wù)并非某個(gè)教學(xué)活動(dòng)所能達(dá)成的,而應(yīng)在教學(xué)活動(dòng)中創(chuàng)設(shè)大量的問題解決的情境,在具體情境中發(fā)展學(xué)生的有關(guān)能力。為此,本節(jié)課的教學(xué)目標(biāo)是:
知識(shí)目標(biāo):
通過分析問題中的數(shù)量關(guān)系,抽象出方程解決問題,認(rèn)識(shí)方程模型的重要性,并總結(jié)運(yùn)用方程解決實(shí)際問題的一般過程。
能力目標(biāo):
1、經(jīng)歷分析,抽象和建模的過程,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效的數(shù)學(xué)模型;
2、能夠抽象出一元二次方程解決有關(guān)實(shí)際問題,能根據(jù)具體問題的實(shí)際意義檢驗(yàn)結(jié)果的合理性,進(jìn)一步培養(yǎng)學(xué)生分析問題、解決問題的意識(shí)和能力;
情感態(tài)度價(jià)值觀:
在問題解決中,經(jīng)歷一定的合作交流活動(dòng),進(jìn)一步發(fā)展學(xué)生合作交流的意識(shí)和能力。
三、學(xué)法指導(dǎo)
本課是學(xué)生學(xué)習(xí)完一元二次方程的解法后的應(yīng)用課,雖然學(xué)生在七八年級(jí)已經(jīng)進(jìn)行了一定的訓(xùn)練,但本課對(duì)學(xué)生而言還是有一定的難度。本課采用啟發(fā)式、問題串討論式、合作學(xué)習(xí)相結(jié)合的方式,引導(dǎo)學(xué)生從已有的知識(shí)和生活經(jīng)驗(yàn)出發(fā),以教材提供的素材為基礎(chǔ),引導(dǎo)學(xué)生對(duì)對(duì)問題中的數(shù)量進(jìn)行分析從而抽象出方程解決問題;學(xué)生之間的合作交流、互助學(xué)習(xí),能更好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,更符合學(xué)生的認(rèn)知規(guī)律。無論是例題的分析還是練習(xí)的分析,盡可能地鼓勵(lì)學(xué)生動(dòng)腦、動(dòng)手、動(dòng)口,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),并且在此過程中發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨(dú)到見解以及思維的誤區(qū),更好地進(jìn)行學(xué)法指導(dǎo)。
四、教學(xué)過程分析
本課時(shí)分為以下五個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):回憶鞏固,情境導(dǎo)入;第二環(huán)節(jié):做一做,探索新知;第三環(huán)節(jié):練一練,鞏固新知;第四環(huán)節(jié):收獲與感悟;第五環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié);情境導(dǎo)入
活動(dòng)內(nèi)容:提出問題:還記得梯子下滑的問題嗎?
在這個(gè)問題中,梯子頂端下滑1米時(shí),梯子底端滑動(dòng)的距離大于1米,那么梯子頂端下滑幾米時(shí),梯子底端滑動(dòng)的距離和它相等呢?如果梯子長(zhǎng)度是13米,梯子頂端下滑的距離與梯子底端滑動(dòng)的距離可能相等嗎?如果相等,那么這個(gè)距離是多少?
分組討論:
怎么設(shè)未知數(shù)?在這個(gè)問題中存在怎樣的等量關(guān)系?如何利用勾股定理抽象出方程?
活動(dòng)目的:以學(xué)生所熟悉的.梯子下滑問題為素材,以前面所學(xué)的勾股定理為切入點(diǎn),用熟悉的情境激發(fā)學(xué)生解決問題的欲望,用學(xué)生已有的知識(shí)為支點(diǎn)抽象出一元二次方程使問題得以解決,進(jìn)一步讓學(xué)生體會(huì)數(shù)形結(jié)合的思想。
活動(dòng)的實(shí)際效果:大部分學(xué)生能夠聯(lián)系以前學(xué)過的勾股定理的三邊關(guān)系抽象出方程對(duì)上述問題進(jìn)行思考,能夠在老師的引導(dǎo)下主動(dòng)地探究問題,取得了比較理想的效果,而且也調(diào)動(dòng)了學(xué)生的學(xué)習(xí)熱情,激發(fā)了學(xué)生的思維,為后面的探索奠定了良好的基礎(chǔ)。
第二環(huán)節(jié)探索新知
活動(dòng)內(nèi)容:見課本P53頁(yè)例1:
如圖:某海軍基地位于A處,在其正南方向200海里處有一重要目標(biāo)B,在B的正東方向200海里處有一重要目標(biāo)C,小島D位于AC的中點(diǎn),島上有一補(bǔ)給碼頭。小島F位于BC中點(diǎn)。一艘軍艦從A出發(fā),經(jīng)B到C勻速巡航,一艘補(bǔ)給船同時(shí)從D出發(fā),沿南偏西方向勻速直線航行,欲將一批物品送達(dá)軍艦。
已知軍艦的速度是補(bǔ)給船的2倍,軍艦在由B到C的途中與補(bǔ)給船相遇,那么相遇時(shí)補(bǔ)給船航行了多少海里?(結(jié)果精確到0.1海里)
在教學(xué)中要給學(xué)生充分的時(shí)間去審清題意,分析各量之間的關(guān)系,不能粗線條解決。在講解過程中可逐步分解難點(diǎn):審清題意;找準(zhǔn)各條有關(guān)線段的長(zhǎng)度關(guān)系;通過抽象思維建立方程模型,之后求解。
實(shí)際應(yīng)用問題比較抽象,因此教學(xué)中老師要給學(xué)生充分的時(shí)間去審清題意,讓學(xué)生自己反復(fù)審題,弄清各量之間的關(guān)系,分析題目中的已知條件和要求解的問題,并在這個(gè)前提下抽象出圖形中各條線段所表示的量,弄清它們之間的關(guān)系,從而抽象出方程模型解決問題。
在學(xué)生分析題意遇到困難時(shí),教學(xué)中可設(shè)置問題串分解難點(diǎn):
(1)要求DE的長(zhǎng),需要如何設(shè)未知數(shù)?
(2)怎樣建立含DE未知數(shù)的等量關(guān)系?從已知條件中能找到嗎?
(3)利用勾股定理建立等量關(guān)系,如何構(gòu)造直角三角形?
(4)選定后,三條邊長(zhǎng)都是已知的嗎?DE,DF,EF分別是多少?
學(xué)生在問題串的引導(dǎo)下,逐層分析,在分組討論后抽象出題目中的等量關(guān)系即:
速度等量:V軍艦=2×V補(bǔ)給船
時(shí)間等量:t軍艦=t補(bǔ)給船
三邊數(shù)量關(guān)系:
弄清圖形中線段長(zhǎng)表示的量:已知AB=BC=200海里,DE表示補(bǔ)給船的路程,AB+BE表示軍艦的路程。
學(xué)生在此基礎(chǔ)上選準(zhǔn)未知數(shù),用未知數(shù)表示出線段:DE、EF的長(zhǎng),根據(jù)勾股定理抽象出方程求解,并判斷解的合理性。
鞏固練習(xí):1、一個(gè)直角三角形的斜邊長(zhǎng)為7cm,一條直角邊比另一條直角邊長(zhǎng)1cm,那么這個(gè)直角三角的面積是多少?
文本框:8cm2、如圖:在RtACB中,∠C=90°,點(diǎn)P、Q同時(shí)由A、B兩點(diǎn)出發(fā)分別沿AC、BC方向向點(diǎn)C勻速移動(dòng),它們的速度都是1m/s,幾秒后PCQ的面積為RtACB面積的一半?
3、在寬為20m,長(zhǎng)為32m的矩形耕地上,修筑同樣寬的三條道路(兩條縱向,一條橫向,橫向與縱向互相垂直),把耕地分成大小相等的六塊作試驗(yàn)田,要使試驗(yàn)田面積為570平方米,問道路應(yīng)為多寬?
說明:三個(gè)題目的設(shè)計(jì)從簡(jiǎn)單問題入手,第一題通過勾股定理抽象出一元二次方程解決直角三角形邊長(zhǎng)問題;第2題構(gòu)造了一個(gè)可變的直角三角形,抽象出方程解決面積問題;第三題也是面積問題,在這個(gè)問題中常設(shè)道路寬為x米,通過平移道路使六塊田地變成一塊田地,從而根據(jù)矩形面積公式抽象出方程解決問題。
活動(dòng)目的:一元二次方程的應(yīng)用題的類型較多,像數(shù)字問題、面積問題、平均增長(zhǎng)(或降低)率問題、利潤(rùn)問題等;本節(jié)課以教材上的引例作為出發(fā)點(diǎn),作為素材來呈現(xiàn),可以將應(yīng)用類型作適當(dāng)?shù)耐卣?,在練?xí)中將教材中的應(yīng)用問題歸類呈現(xiàn)出來,便于學(xué)生理解和掌握。本課由數(shù)形結(jié)合問題拓展到面積問題,后面可以在練習(xí)中增加數(shù)字問題,為學(xué)生呈現(xiàn)更多的應(yīng)用類型,讓學(xué)生在不同的情境中體會(huì)數(shù)學(xué)抽象和建模的重要性。
活動(dòng)實(shí)際效果:應(yīng)用問題設(shè)置都經(jīng)過精心準(zhǔn)備。通過問題串的設(shè)立,將比較復(fù)雜、難以理解的題目分成多個(gè)小的題目去理解,使學(xué)生在不知不覺中克服困難,體會(huì)到通過抽象出方程解應(yīng)用題的三個(gè)重要環(huán)節(jié):整體系統(tǒng)的審清題意;尋找等量關(guān)系;正確求解并檢驗(yàn)解的合理性。采取的是一講一練,從鞏固練習(xí)的準(zhǔn)確程度上來看,學(xué)生掌握得比較好,能夠達(dá)到預(yù)期的效果。
第三環(huán)節(jié):練一練,鞏固新知
活動(dòng)內(nèi)容:
1、在一塊正方形的鋼板上裁下寬為20cm的一個(gè)長(zhǎng)條,剩下的長(zhǎng)方形鋼板的面積為4800cm2。求原正方形鋼板的面積。
2、有這樣一道阿拉伯古算題:有兩筆錢,一多一少,其和等于20,積等于96,多的一筆錢被許諾賞給賽義德,那么賽義德得到多少錢?
3、《九章算術(shù)》“勾股”章有一題:甲、乙二人同時(shí)從同一地點(diǎn)出發(fā),甲的速度為7,乙的速度為3。乙一直向東走,甲先向南走了10步,后又斜向北偏東方向走了一段后與乙相遇。那么相遇時(shí),甲、乙各走了多遠(yuǎn)?
活動(dòng)目的:通過三道問題的解決,查缺補(bǔ)漏,了解學(xué)生的掌握情況和靈活運(yùn)用知識(shí)的程度。在教學(xué)過程中要以學(xué)生為主體,引導(dǎo)學(xué)生自主發(fā)現(xiàn)、合作交流?;顒?dòng)實(shí)際效果:學(xué)生在前面活動(dòng)中積累的經(jīng)驗(yàn),可以幫助學(xué)生比較順利地分析上述問題,遇有疑難可以讓學(xué)生在合作交流中解決,學(xué)生在訓(xùn)練過程中更加理解數(shù)學(xué)抽象和建模的重要性.大部分學(xué)生能夠獨(dú)立解決問題。
第四環(huán)節(jié):收獲與感悟
活動(dòng)內(nèi)容:提問:
1、列方程解應(yīng)用題的關(guān)鍵;
2、列方程解應(yīng)用題的步驟;
3、列方程應(yīng)注意的一些問題。
學(xué)生在學(xué)習(xí)小組中回顧與反思,并進(jìn)行組間交流發(fā)言。
活動(dòng)目的:鼓勵(lì)學(xué)生回顧本節(jié)課知識(shí)方面有哪些收獲,解題技能方面有哪些提高,還有什么疑難問題希望得到解決;通過對(duì)三個(gè)問題的解決,加深學(xué)生通過抽象思維抽象出方程解決實(shí)際問題的意識(shí)和能力;并且通過學(xué)生間的合作學(xué)習(xí)幫助不同層次的孩子解決實(shí)際困難,增強(qiáng)孩子學(xué)好數(shù)學(xué)的信心。
活動(dòng)實(shí)際效果:學(xué)生通過回顧本節(jié)課的學(xué)習(xí)過程,體會(huì)利用抽象思維抽象出一元二次方程解決實(shí)際問題的方法和技巧,進(jìn)一步提高自己解決問題的能力。
第五環(huán)節(jié):布置作業(yè)
1、甲乙兩個(gè)小朋友的年齡相差4歲,兩個(gè)人的年齡相乘積等于45,你知道這兩個(gè)小朋友幾歲嗎?
2、一塊長(zhǎng)方形草地的長(zhǎng)和寬分別為20m和15m,在它四周外圍環(huán)繞著寬度相等的小路,已知小路的面積為246,求小路的寬度。
3、一個(gè)兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)比個(gè)位數(shù)小2,求這兩位數(shù)。
一、教材分析
(一)教材的地位和作用
“一元二次方程的解法”是初中代數(shù)的方程中的一個(gè)重要內(nèi)容之一,是在學(xué)完一元一次方程、因式分解、數(shù)的開方、以及前三種因式分解法、直接開方法、配方法解一元二次方程的基礎(chǔ)上,掌握用求根公式解一元二次方程,是配方法和開平方兩個(gè)知識(shí)的綜合運(yùn)用和升華。通過本節(jié)課的教學(xué)使學(xué)生明確配方法是解方程的通法,同時(shí)會(huì)根據(jù)題目選擇合適的方法解一元二次方程。一元二次方程的解法也是今后學(xué)習(xí)二次函數(shù)和一元二次不等式的基礎(chǔ)。
(二)教學(xué)目標(biāo)
知識(shí)技能方面:理解一元二次方程求根公式的推導(dǎo)過程,會(huì)用公式法解一元二次方程。
數(shù)學(xué)思考方面:通過求根公式的推導(dǎo)過程進(jìn)一步使學(xué)生熟練掌握配方法,培養(yǎng)學(xué)生數(shù)學(xué)推理的嚴(yán)密性和邏輯性以及由特殊到一般的數(shù)學(xué)思想。
解決問題方面:結(jié)合用公式法解一元二次方程的練習(xí),培養(yǎng)學(xué)生快速準(zhǔn)確的運(yùn)算能力和運(yùn)用公式解決實(shí)際問題的能力。
情感態(tài)度方面:讓學(xué)生體驗(yàn)到所有的方程都可以用公式法解決,感受到公式的對(duì)稱美、簡(jiǎn)潔美,滲透分類的思想;公式的引入培養(yǎng)學(xué)生尋求簡(jiǎn)便方法的探索精神和創(chuàng)新意識(shí)。
(三)教學(xué)重、難點(diǎn)
重點(diǎn):掌握用公式法解一元二次方程的一般步驟;會(huì)熟練用公式法解一元二次方程。
難點(diǎn):理解求根公式的推導(dǎo)過程和判別式
二、教學(xué)法分析
教法:本節(jié)課采用引導(dǎo)發(fā)現(xiàn)式的自主探究式與交流討論結(jié)合的方法;在教學(xué)中由舊知識(shí)引導(dǎo)探究一般化問題的形式展開,利用學(xué)生已有的知識(shí)、多交流、主動(dòng)參與到教學(xué)活動(dòng)中來。
學(xué)法:讓學(xué)生學(xué)會(huì)善于觀察、分析討論和分類歸納的方法,提出問題后,鼓勵(lì)學(xué)生通過分析、探索、嘗試解決問題的方法,銅鎖親自嘗試,使學(xué)生的思維能力得到培養(yǎng)。
三、過程分析
本節(jié)課的教學(xué)設(shè)計(jì)成以下六個(gè)環(huán)節(jié):復(fù)習(xí)導(dǎo)入——呈現(xiàn)問題——例題講解——鞏固練習(xí)課時(shí)小結(jié)——布置作業(yè)。
1、復(fù)習(xí)引入:
這節(jié)課,我首先從舊知
問題(1)用配方法解方程2x28x90的練習(xí)引入,
問題(2)總結(jié)配方法的一般步驟(化一般方程——二次項(xiàng)系數(shù)為1——配方使左邊為完全平方式——兩邊開方——求解)。
設(shè)計(jì)意圖:讓學(xué)生鞏固昨天的知識(shí),進(jìn)一步熟練鑰匙并為今天做學(xué)的內(nèi)容解一般形式的一元二次方程做好鋪墊,達(dá)到“溫故而知新”。
2、問題呈現(xiàn):
你能用配方法解一般形式的一元二次方程嗎?
此處由一個(gè)特殊的舊知引導(dǎo)學(xué)生推導(dǎo)出一般的結(jié)果,希望學(xué)生學(xué)會(huì)由特殊性到一般化的思想。為降低b2b24ac推導(dǎo)的難度,化簡(jiǎn)、移項(xiàng)、配方、變形由我和學(xué)生一起探究完成,到(x這步時(shí),提出)
問題:①此時(shí)可以直接開平方嗎?
②等號(hào)右邊的值需要滿足什么條件?為什么?
③等號(hào)右邊的值只跟哪個(gè)式子有關(guān)?
設(shè)計(jì)意圖:師生共同完成前四步,這樣與利于減輕學(xué)生的思維負(fù)擔(dān),便于將主要精力放在后邊公式的推導(dǎo)上。通過小組的討論有利于發(fā)揮學(xué)生的'互幫互助,借助小組的交流完善答案,關(guān)鍵讓學(xué)生會(huì)對(duì)掌握b24ac與方程有無實(shí)數(shù)根的關(guān)系,這里分類思想也是今后常用的一種數(shù)學(xué)思想,b24ac進(jìn)行討論,
應(yīng)加以強(qiáng)化。
最終總結(jié)出:
當(dāng)b24ac<0時(shí),原方程無實(shí)數(shù)解。
當(dāng)b24ac≥0時(shí),原方程有實(shí)數(shù)解,
再進(jìn)一步談?wù)摚篵24ac=0與b24ac>0時(shí),兩個(gè)解區(qū)別?
(b24ac=0時(shí),兩個(gè)相等的實(shí)數(shù)解,b24ac>0時(shí),兩個(gè)不等的實(shí)數(shù)解)
由此可知,方程有解還是無解是由b24ac決定,即b24ac是方程解的判別式。
同時(shí),方程的解是可以將a、b、c
的值帶入公式x根公式”,利用它解一元二次方程叫做公式法。
3、例題講解
例4:用公式法解下列方程
總結(jié)步驟:
1、把方程公成一般形式,并寫出a,b,c的值。
2、求出b24ac的值
4、寫出方程的解:x1=,x2=
設(shè)計(jì)意圖:規(guī)范解題格式,讓學(xué)生體會(huì)數(shù)學(xué)課中的嚴(yán)謹(jǐn)?shù)倪壿嬐评?;體驗(yàn)并掌握公式法解一元二次方程的步驟,從中讓學(xué)生領(lǐng)會(huì)到由特殊到一般,一般到特殊的辯證思想。
4、鞏固練習(xí)
解下列一元二次方程:①x2x60
②4x2x90
③x2100
設(shè)計(jì)意圖:
(1)熟悉公式法,強(qiáng)化解題格式,
(2)及時(shí)發(fā)現(xiàn)錯(cuò)誤及時(shí)解決。
例5:解方程:x(x1)(x2)
化簡(jiǎn)得12212x3x402
強(qiáng)調(diào):
①當(dāng)方程不是一般形式時(shí),應(yīng)先化成一般形式,再運(yùn)用求根公式。
②你還能用其他方法解本例方程嗎?
設(shè)計(jì)意圖:明確一元二次方程解題方法的多樣性,讓學(xué)生在你觀察分析題目后靈活合理的選擇解題方法,培養(yǎng)學(xué)生的多樣化思維,提高解題能力和解題的速度。
5、課時(shí)小結(jié)
(1)學(xué)生作知識(shí)總結(jié):本節(jié)課通過配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步驟解一元二次方程。
(2)我擴(kuò)展:(方法歸納)求根公式是一元二次方程的專用公式,只有在確定方程是一元二次方程時(shí)才能使用,是常用而重要的一元二次方程的萬能求根公式。
6、布置作業(yè):面向全體學(xué)生,注重個(gè)體差異,加強(qiáng)作業(yè)的針對(duì)性,分層布置作業(yè),適應(yīng)新課標(biāo),讓不同的學(xué)生各其所長(zhǎng),因材施教的要求,提高他們的學(xué)習(xí)的興趣和自信心。
四、板書設(shè)計(jì)
本節(jié)課內(nèi)容較為單一,通過“層層設(shè)疑”、“復(fù)習(xí)回顧”等環(huán)節(jié)促進(jìn)學(xué)生的思考和探究。
通過比較合理的問題設(shè)計(jì)鞏固練習(xí)、小組討論等形式給學(xué)生提供了充分的展示機(jī)會(huì),強(qiáng)化了學(xué)生的運(yùn)算能力,有利于學(xué)生掌握基本技能。
教學(xué)目標(biāo):
1、經(jīng)歷抽象一元二次方程概念的過程,進(jìn)一步體會(huì)是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型
2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能將一元二次方程轉(zhuǎn)化為一般形式,正確識(shí)別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng)。
教學(xué)重點(diǎn)
1、一元二次方程及其它有關(guān)的概念。
2、利用實(shí)際問題建立一元二次方程的數(shù)學(xué)模型。
教學(xué)難點(diǎn)
1、建立一元二次方程實(shí)際問題的數(shù)學(xué)模型.
2、把一元二次方程化為一般形式
教學(xué)方法:
指導(dǎo)自學(xué),自主探究
課時(shí):
第一課時(shí)
教學(xué)過程:
(學(xué)生通過導(dǎo)學(xué)提綱,了解本節(jié)課自己應(yīng)該掌握的內(nèi)容)
一、自主探索:(學(xué)生通過自學(xué),經(jīng)歷思考、討論、分析的過程,最終形成一元二次方程及其有關(guān)概念)
1、請(qǐng)認(rèn)真完成課本P39—40議一議以上的內(nèi)容;化簡(jiǎn)上述三個(gè)方程。
2、你發(fā)現(xiàn)上述三個(gè)方程有什么共同特點(diǎn)?
你能把這些特點(diǎn)用一個(gè)方程概括出來嗎?
3、請(qǐng)同學(xué)看課本40頁(yè),理解記憶一元二次方程的概念及有關(guān)概念
你覺得理解這個(gè)概念要掌握哪幾個(gè)要點(diǎn)?你還掌握了什么?
二、學(xué)以致用:(通過練習(xí),加深學(xué)生對(duì)一元二次方程及其有關(guān)概念的理解與把握)
1、下列哪些是一元二次方程?哪些不是?
①②③
④x2+2x-3=1+x2 ⑤ax2+bx+c=0
2、判斷下列方程是不是關(guān)于x的一元二次方程,如果是,寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)
3、若關(guān)于x的方程(k-3)x2+2x-1=0是一元二次方程,則k的值是多少?
4、關(guān)于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么條件下它是一元二次方程?在什么條件下它是一元一次方程?
5、以-2、3、0三個(gè)數(shù)作為一個(gè)一元二次方程的系數(shù)和常數(shù)項(xiàng),請(qǐng)你寫出滿足條件的不同的一元二次方程?
三、反思:(學(xué)生,進(jìn)一步加深本節(jié)課所學(xué)內(nèi)容)
這節(jié)課你學(xué)到了什么?
四、自查自?。海ㄍㄟ^當(dāng)堂小測(cè),及時(shí)發(fā)現(xiàn)問題,及時(shí)應(yīng)對(duì))
教學(xué)反思
這次我參加了區(qū)里組織的優(yōu)質(zhì)
課比賽,這次的優(yōu)質(zhì)課采用市里要求的1/3模式,這對(duì)于我們來說具有一定的挑戰(zhàn)性。所謂“1/3模式”,就是把課堂教學(xué)時(shí)間大致分為3個(gè)部分,1/3的時(shí)間個(gè)人自主學(xué)習(xí),1/3的時(shí)間小組合作學(xué)習(xí),1/3的時(shí)間全班交流討論。在1/3模式中,整個(gè)教學(xué)過程由教師和學(xué)生共同參與,每個(gè)環(huán)節(jié)1/3的時(shí)間只是大致的劃分,可根據(jù)學(xué)習(xí)內(nèi)容靈活安排。這就對(duì)教師提出了較高的要求。
首先要準(zhǔn)備好學(xué)案。學(xué)案就是學(xué)生學(xué)習(xí)的依據(jù)。在學(xué)案里,教師要提出明確的學(xué)習(xí)要求。學(xué)習(xí)要求可包括以下方面:完成學(xué)習(xí)任務(wù)的時(shí)間、學(xué)習(xí)內(nèi)容的范圍、完成學(xué)習(xí)任務(wù)所要達(dá)到的程度、自主學(xué)習(xí)成果展現(xiàn)的形式等。這就要求教師要提前考慮周全,對(duì)于學(xué)生學(xué)習(xí)的要求要一次性提出,內(nèi)容上有梯度。學(xué)生自主學(xué)習(xí)時(shí),教師要深入學(xué)生當(dāng)中,觀察學(xué)生的學(xué)習(xí)狀況,檢查學(xué)習(xí)任務(wù)完成的情況,有針對(duì)性的指導(dǎo)和幫助教師對(duì)自主學(xué)習(xí)方法和途徑的指導(dǎo)要適度,既要滿足學(xué)生完成學(xué)習(xí)任務(wù)的需要,又不能擠占學(xué)生自主探究的空間
其次,學(xué)習(xí)氛圍是合作學(xué)習(xí)成功的關(guān)鍵之一,教師要營(yíng)造安全的心理環(huán)境、充裕的時(shí)空環(huán)境、熱情的幫助環(huán)境、真誠(chéng)的激勵(lì)環(huán)境,只就要求教師在語(yǔ)言上也要有較高水平,會(huì)發(fā)動(dòng)學(xué)生,會(huì)調(diào)動(dòng)學(xué)生的積極性,讓課堂氣氛活躍起來,讓學(xué)生充分發(fā)揮自己的水平。
再是,由于課堂上主要是以學(xué)生為主。這就要求教師盡量少講,要充當(dāng)好組織者、引導(dǎo)者、傾聽者的角色,不要急于發(fā)表自己的觀點(diǎn),只要學(xué)生能講的`教師就不要講,要避免因?yàn)榻處煶尸F(xiàn)自己的觀點(diǎn)而打破學(xué)生的討論。學(xué)生說完的東西,如果沒有問題,教師就不要重復(fù)。教師對(duì)學(xué)習(xí)內(nèi)容要點(diǎn)的講解要有的放矢,能起到畫龍點(diǎn)睛的作用。要在學(xué)生原有的水平上進(jìn)行提升,有助于學(xué)生加深對(duì)知識(shí)的理解。
我們只有在教學(xué)中不斷的學(xué)習(xí),不斷的改進(jìn)自己,才能保證我們的課堂很精彩,是名副其實(shí)的優(yōu)質(zhì)課。
【教學(xué)目標(biāo)】
1、會(huì)根據(jù)具體問題中的數(shù)量關(guān)系列一元二次方程并求解。
2、能根據(jù)問題的實(shí)際意義,檢驗(yàn)所得結(jié)果是否合理。
3、進(jìn)一步掌握列方程解應(yīng)用題的步驟和關(guān)鍵。
【教學(xué)過程】
一、復(fù)習(xí)回顧:
1、解一元二次方程都有哪些方法?(學(xué)生口答)
2、列一元一次方程解應(yīng)用題有哪些步驟?(學(xué)生口答)
①審題;
②設(shè)未知數(shù);
③找相等關(guān)系;
④列方程;
⑤解方程;
⑥答。
二、問題探究:
(一)思考課本探究1回答下列問題:
(1)設(shè)每輪傳染中平均一個(gè)人傳染x個(gè)人,那么患流感的這個(gè)人在第一輪傳染中傳染了 人;第一輪傳染后,共有 人患了流感。
(2)在第二輪傳染中,傳染源是 人,這些人中每一個(gè)人又傳染了 人,那么第二輪傳染了 人,第二輪傳染后,共有 人患流感。
(3)根據(jù)等量關(guān)系列方程并求解。為什么要舍去一解?
(4)通過對(duì)這個(gè)問題的探究,你對(duì)類似的傳播問題中的數(shù)量關(guān)系有新的認(rèn)識(shí)嗎?
(5)完成教材思考:如果按照這樣的傳播速度,三輪傳染后,有多少人患流感?
(學(xué)生在交流中解決問題,教師深入小組討論,對(duì)疑惑較多的問題要點(diǎn)撥;前兩個(gè)問是解題的關(guān)鍵,可作適當(dāng)點(diǎn)撥。最后思考題,可讓學(xué)生試試獨(dú)立完成。教給學(xué)生如何審題,分析題。)
三、例題學(xué)習(xí):
例1:青山村種的水稻2001年平均每公頃產(chǎn)7200kg,2003年平均每公頃產(chǎn)8450kg,求水稻每公頃產(chǎn)量的年平均增長(zhǎng)率。 (學(xué)生獨(dú)立思考、練習(xí)。一學(xué)生板書,教師巡視后講解)
例2:(教材探究2)兩年前生產(chǎn)1噸甲種藥品的成本是5000元,生產(chǎn)1噸乙種藥品的成本是6000元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1噸甲種藥品的成本是3000元,生產(chǎn)1噸乙種藥品的成本是3600元,哪種藥品成本的年平均下降率較大?
(給學(xué)生分組求解,然后比較哪個(gè)小組做的有快又準(zhǔn)。最后比較哪種藥品成本平均下降率較大。)
四、課堂練習(xí):(學(xué)生獨(dú)立思考、練習(xí)。一學(xué)生板書,教師巡視后講解)
1、某種植物的主干長(zhǎng)出若干數(shù)目的枝干,每個(gè)枝干又長(zhǎng)出同樣數(shù)目的'小分支,主干、支干和小分支的總數(shù)是91,每個(gè)支干長(zhǎng)出多少小分支?
2、有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,毎輪傳染中平均一個(gè)人傳染了幾個(gè)人?
五、總結(jié)反思:(由學(xué)生自己完成,教師作適當(dāng)補(bǔ)充)
1、列一元二次方程解應(yīng)用題的步驟:審、設(shè)、找、列、解、答。最后要檢驗(yàn)根是否符合實(shí)際意義。
2、探究2是平均增長(zhǎng)率或降低率問題。若平均增長(zhǎng)(降低)率為x,增長(zhǎng)(或降低)前的基數(shù)是a,增長(zhǎng)(或降低)n次后的量是b,則有: (常見n=2)
教后記:
本節(jié)課是一元二次方程的應(yīng)用第一課時(shí)。通過本節(jié)課的教學(xué),總體感覺調(diào)動(dòng)了學(xué)生的積極性,能夠充分發(fā)揮學(xué)生的主體作用,以現(xiàn)實(shí)生活情境問題入手,激發(fā)了學(xué)生思維的火花,具體我以為有以下幾個(gè)特點(diǎn):
一、通過學(xué)生口答,復(fù)習(xí)了列方程解應(yīng)用題的一般步驟及解一元二次方程的方法,為學(xué)習(xí)本節(jié)知識(shí)打好了基礎(chǔ)。
二、問題探究通過問題串讓學(xué)生解決的問題由淺入深,由易到難,也讓學(xué)生解決問題的能力逐級(jí)上升,這樣學(xué)生感到成功機(jī)會(huì)增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時(shí)學(xué)生在學(xué)習(xí)中相互交流、相互學(xué)習(xí),共同提高。
三、本節(jié)課第一個(gè)例題,是增長(zhǎng)率問題中的一個(gè)典型例題,我在引導(dǎo)學(xué)生解決此題之后,進(jìn)一步總結(jié)了列方程解應(yīng)用題的步驟。不僅關(guān)注結(jié)果更關(guān)注過程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。
四、在課堂中始終貫徹?cái)?shù)學(xué)源于生活又用于生活的數(shù)學(xué)觀念,同時(shí)用方程來解決問題,使學(xué)生樹立一種數(shù)學(xué)建模的思想。
五、課堂上多給學(xué)生展示的機(jī)會(huì),讓學(xué)生走上講臺(tái),向同學(xué)們展示自己的聰明才智。同時(shí)在這個(gè)過程中,更有利于發(fā)現(xiàn)學(xué)生分析問題與解決問題獨(dú)到見解及思維誤區(qū),以便指導(dǎo)今后教學(xué)??傊ㄟ^各種啟發(fā)、激勵(lì)的教學(xué)手段,幫助學(xué)生形成積極主動(dòng)求知態(tài)度,課堂收效大。
六、需改進(jìn)的方面:
1、由于怕完不成任務(wù),給學(xué)生獨(dú)立思考時(shí)間安排有些不合理,這樣容易讓思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。例如例2有多種解法,課后一些學(xué)生與老師交流,但課上沒有得到充分的展示、
2、只考慮撲捉學(xué)生的思維亮點(diǎn),一學(xué)生列錯(cuò)了方程,我沒有給予及時(shí)糾正。導(dǎo)致使一些同學(xué)陷入誤區(qū)、
3、下課后很多學(xué)生和我溝通課上一學(xué)生的錯(cuò)誤問題,但他們上課并不敢提出,有點(diǎn)卻場(chǎng),所以平時(shí)要培養(yǎng)學(xué)生敢想敢說敢于發(fā)表個(gè)人的不同見解的學(xué)風(fēng)。
感謝您閱讀“幼兒教師教育網(wǎng)”的《2024二元二次方程的教案》一文,希望能解決您找不到幼兒園教案時(shí)遇到的問題和疑惑,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了一元二次方程教案專題,希望您能喜歡!
相關(guān)推薦
老師每一堂上一般都需要一份教案課件,寫好教案課件是每位老師必須具備的基本功。教案是引導(dǎo)學(xué)生發(fā)展的重要工具。以下是一篇關(guān)于“一元二次方程的解教案”的特別整理文章,希望以下整理可以為您節(jié)省一些時(shí)間和精力作為參考和借鑒之用!...
以下是我為大家精選的一篇有關(guān)“一元二次方程教案”的文章,請(qǐng)根據(jù)自己的需要和情況靈活運(yùn)用這些信息。教案課件是老師工作中的一部分,老師還沒有寫的話現(xiàn)在也來的及。教案是完整課堂教學(xué)的保障。...
以下是幼兒教師教育網(wǎng)的編輯為大家整理的“一元二次方程教案”。上課之前充分準(zhǔn)備好所需的教案和課件是非常重要的,每位教師都需要完成這項(xiàng)任務(wù)。編寫出優(yōu)質(zhì)的教案和課件可以避免老師忽略重要內(nèi)容。未來我們將繼續(xù)分享相關(guān)方面的內(nèi)容!...
最新更新