幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

高中數(shù)學(xué)教案詳案范文大全

發(fā)布時間:2024-10-03

作為一位杰出的教職工,很有必要精心設(shè)計一份教學(xué)設(shè)計,教學(xué)設(shè)計一般包括教學(xué)目標、教學(xué)重難點、教學(xué)方法、教學(xué)步驟與時間分配等環(huán)節(jié)。教學(xué)設(shè)計要怎么寫呢?以下是小編整理的高中數(shù)學(xué)教學(xué)設(shè)計,僅供參考,希望能夠幫助到大家。

高中數(shù)學(xué)教案詳案范文大全 篇1

一、教學(xué)內(nèi)容分析

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象,恰當?shù)乩枚x解題,許多時候能以簡馭繁,因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質(zhì)后,再一次強調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。

二、學(xué)生學(xué)習(xí)情況分析

我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達能力也略顯不足。

三、設(shè)計思想

由于這部分知識較為抽象,如果離開感性認識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情,在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。

四、教學(xué)目標

1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。

2.通過對練習(xí),強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

五、教學(xué)重點與難點:

教學(xué)重點

1.對圓錐曲線定義的理解

2.利用圓錐曲線的定義求“最值”

3.“定義法”求軌跡方程

教學(xué)難點:

巧用圓錐曲線定義解題

六、教學(xué)過程設(shè)計

【設(shè)計思路】

(一)開門見山,提出問題

一上課,我就直截了當?shù)亟o出——

例題1:(1) 已知A(-2,0), B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是( )。

(A)橢圓 (B)雙曲線 (C)線段 (D)不存在

(2)已知動點 M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是( )。

(A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線

【設(shè)計意圖】

定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個必備條件,而通過一個階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的'問題。

為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習(xí)題。

【學(xué)情預(yù)設(shè)】

估計多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費一番周折—— 如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2

5這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5

入手,考慮通過適當?shù)淖冃?,轉(zhuǎn)化為學(xué)生們熟知的兩個距離公式。

在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是 ,實軸長為 ,焦距為 。以深化對概念的理解。

(二)理解定義、解決問題

例2 (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內(nèi)切,求△ABC面積的最大值。

(2)在(1)的條件下,給定點P(-2,2), 求|PA|

【設(shè)計意圖】

運用圓錐曲線定義中的數(shù)量關(guān)系進行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。

【學(xué)情預(yù)設(shè)】

根據(jù)以往的經(jīng)驗,多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關(guān)鍵在于能準確寫出點A的軌跡,有了練習(xí)題1的鋪墊,這個問題對學(xué)生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學(xué)生應(yīng)該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。

(三)自主探究、深化認識

如果時間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗的機會——

練習(xí):設(shè)點Q是圓C:(x1)2225|AB|的最小值。 3y225上動點,點A(1,0)是圓內(nèi)一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。

引申:若將點A移到圓C外,點M的軌跡會是什么?

【設(shè)計意圖】 練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺,當然,如果課堂上時間允許的話,

可借助“多媒體課件”,引導(dǎo)學(xué)生對自己的結(jié)論進行驗證。

【知識鏈接】

(一)圓錐曲線的定義

1. 圓錐曲線的第一定義

2. 圓錐曲線的統(tǒng)一定義

(二)圓錐曲線定義的應(yīng)用舉例

1.雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。

2.|PF1||PF2|2.P為等軸雙曲線x2y2a2上一點, F1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。

3.在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。

4.(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。

x2y211(2)已知A(,3)為一定點,F(xiàn)為雙曲線1的右焦點,M在雙曲線右支上移動,當|AM||MF|最小時,求M點的坐標。

(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。

5.已知A(4,0),B(2,2)是橢圓1內(nèi)的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。

七、教學(xué)反思

1.本課將借助于,將使全體學(xué)生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學(xué),節(jié)省了板演的時間,從而給學(xué)生留出更多的時間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機結(jié)合的教學(xué)優(yōu)勢。

2.利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實上,學(xué)生們的思維運動量并不會小。

總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個重要研究課題.而要能真正進行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識,自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實踐的機會,能夠使學(xué)生在學(xué)習(xí)新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

高中數(shù)學(xué)教案詳案范文大全 篇2

教學(xué)目標

1.理解的概念,掌握的通項公式,并能運用公式解決簡單的問題.

(1)正確理解的定義,了解公比的概念,明確一個數(shù)列是的限定條件,能根據(jù)定義判斷一個數(shù)列是,了解等比中項的概念;

(2)正確認識使用的表示法,能靈活運用通項公式求的首項、公比、項數(shù)及指定的項;

(3)通過通項公式認識的性質(zhì),能解決某些實際問題.

2.通過對的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).

3.通過對概念的歸納,進一步培養(yǎng)學(xué)生嚴密的思維習(xí)慣,以及實事求是的科學(xué)態(tài)度.

教學(xué)建議

教材分析

(1)知識結(jié)構(gòu)

是另一個簡單常見的數(shù)列,研究內(nèi)容可與等差數(shù)列類比,首先歸納出的定義,導(dǎo)出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應(yīng)用.

(2)重點、難點分析

教學(xué)重點是的定義和對通項公式的認識與應(yīng)用,教學(xué)難點在于通項公式的推導(dǎo)和運用.

①與等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項公式得出的特性,這些是教學(xué)的重點.

②雖然在等差數(shù)列的學(xué)習(xí)中曾接觸過不完全歸納法,但對學(xué)生來說仍然不熟悉;在推導(dǎo)過程中,需要學(xué)生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導(dǎo)是難點.

③對等差數(shù)列、的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.

教學(xué)建議

(1)建議本節(jié)課分兩課時,一節(jié)課為的概念,一節(jié)課為通項公式的應(yīng)用.

(2)概念的引入,可給出幾個具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個等差數(shù)列和幾個混在一起給出,由學(xué)生將這些數(shù)列進行分類,有一種是按等差、等比來分的`,由此對比地概括的定義.

(3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項均不為0的特性,加深對概念的理解.

(4)對比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法.啟發(fā)學(xué)生用函數(shù)觀點認識通項公式,由通項公式的結(jié)構(gòu)特征畫數(shù)列的圖象.

(5)由于有了等差數(shù)列的研究經(jīng)驗,的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).

(6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.

教學(xué)設(shè)計示例

課題:的概念

教學(xué)目標

1.通過教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項公式.

2.使學(xué)生進一步體會類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

3.培養(yǎng)學(xué)生勤于思考,實事求是的精神,及嚴謹?shù)目茖W(xué)態(tài)度.

教學(xué)重點,難點

重點、難點是的定義的歸納及通項公式的推導(dǎo).

教學(xué)用具

投影儀,多媒體軟件,電腦.

教學(xué)方法

討論、談話法.

教學(xué)過程

一、提出問題

給出以下幾組數(shù)列,將它們分類,說出分類標準.(幻燈片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生發(fā)表意見(可能按項與項之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為).

二、講解新課

請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設(shè)每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設(shè)開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——.(這里播放變形蟲分裂的多媒體軟件的第一步)

(板書)

1.的定義(板書)

根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出的定義,標注出重點詞語.

請學(xué)生指出②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是.學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例.而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當時,數(shù)列既是等差又是,當時,它只是等差數(shù)列,而不是.教師追問理由,引出對的認識:

2.對定義的認識(板書)

(1)的首項不為0;

(2)的每一項都不為0,即;

問題:一個數(shù)列各項均不為0是這個數(shù)列為的什么條件?

(3)公比不為0.

用數(shù)學(xué)式子表示的定義.

是①.在這個式子的寫法上可能會有一些爭議,如寫成,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為是?為什么不能?

式子給出了數(shù)列第項與第項的數(shù)量關(guān)系,但能否確定一個?(不能)確定一個需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.

3.的通項公式(板書)

問題:用和表示第項.

①不完全歸納法

.

②疊乘法

,…,,這個式子相乘得,所以.

(板書)(1)的通項公式

得出通項公式后,讓學(xué)生思考如何認識通項公式.

(板書)(2)對公式的認識

由學(xué)生來說,最后歸結(jié):

①函數(shù)觀點;

②方程思想(因在等差數(shù)列中已有認識,此處再復(fù)習(xí)鞏固而已).

這里強調(diào)方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個條件,就多知道了一個量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

三、小結(jié)

1.本節(jié)課研究了的概念,得到了通項公式;

2.注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

3.用方程的思想認識通項公式,并加以應(yīng)用.

四、作業(yè)(略)

五、板書設(shè)計

1.等比數(shù)列的定義

2.對定義的認識

3.等比數(shù)列的通項公式

(1)公式

(2)對公式的認識

探究活動

將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.

參考答案:

30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度.如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應(yīng)是粒,用計算器算一下吧(用對數(shù)算也行).

高中數(shù)學(xué)教案詳案范文大全 篇3

一、單元教學(xué)內(nèi)容

(1)算法的基本概念

(2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)

(3)算法的基本語句:輸入、輸出、賦值、條件、循環(huán)語句

二、單元教學(xué)內(nèi)容分析

算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國古代數(shù)學(xué)中蘊涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對具體數(shù)學(xué)實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學(xué)習(xí)設(shè)計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力

三、單元教學(xué)課時安排:

1、算法的基本概念 3課時

2、程序框圖與算法的基本結(jié)構(gòu) 5課時

3、算法的基本語句 2課時

四、單元教學(xué)目標分析

1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

2、通過模仿、操作、探索,經(jīng)歷通過設(shè)計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。

3、經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環(huán)語句,進一步體會算法的基本思想。

4、通過閱讀中國古代數(shù)學(xué)中的算法案例,體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻。

五、單元教學(xué)重點與難點分析

1、重點

(1)理解算法的含義

(2)掌握算法的基本結(jié)構(gòu)

(3)會用算法語句解決簡單的實際問題

2、難點

(1)程序框圖

(2)變量與賦值

(3)循環(huán)結(jié)構(gòu)

(4)算法設(shè)計

六、單元總體教學(xué)方法

本章教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強,只能通過對實例的認真領(lǐng)會及一定的練習(xí)才能掌握本節(jié)知識。

七、單元展開方式與特點

1、展開方式

自然語言→程序框圖→算法語句

2、特點

(1)螺旋上升 分層遞進

(2)整合滲透 前呼后應(yīng)

(3)三線合一 橫向貫通

(4)彈性處理 多樣選擇

八、單元教學(xué)過程分析

1. 算法基本概念教學(xué)過程分析

對生活中的.實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

2.算法的流程圖教學(xué)過程分析

對生活中的實際問題通過模仿、操作、探索,經(jīng)歷通過設(shè)計流程圖表達解決問題的過程,了解算法和程序語言的區(qū)別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會用流程圖表示算法。

3. 基本算法語句教學(xué)過程分析

經(jīng)歷將具體生活中問題的流程圖轉(zhuǎn)化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環(huán)語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,

4. 通過閱讀中國古代數(shù)學(xué)中的算法案例,體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻。

九、單元評價設(shè)想

1.重視對學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評價

關(guān)注學(xué)生在數(shù)學(xué)語言的學(xué)習(xí)過程中,是否對用集合語言描述數(shù)學(xué)和現(xiàn)實生活中的問題充滿興趣;在學(xué)習(xí)過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發(fā)展自己運用數(shù)學(xué)語言進行交流的能力。

2.正確評價學(xué)生的數(shù)學(xué)基礎(chǔ)知識和基本技能

關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識,主要包括算法的基本結(jié)構(gòu)、基本語句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進一步學(xué)習(xí)算法

高中數(shù)學(xué)教案詳案范文大全 篇4

一、教學(xué)目標

1.知識與技能

(1)掌握畫三視圖的基本技能

(2)豐富學(xué)生的空間想象力

2.過程與方法

主要通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。

3.情感態(tài)度與價值觀

(1)提高學(xué)生空間想象力

(2)體會三視圖的作用

二、教學(xué)重點、難點

重點:畫出簡單組合體的三視圖

難點:識別三視圖所表示的空間幾何體

三、學(xué)法與教學(xué)用具

1.學(xué)法:觀察、動手實踐、討論、類比

2.教學(xué)用具:實物模型、三角板

四、教學(xué)思路

(一)創(chuàng)設(shè)情景,揭開課題

“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。

在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

(二)實踐動手作圖

1.講臺上放球、長方體實物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;

2.教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖

(1)畫出球放在長方體上的三視圖

(2)畫出礦泉水瓶(實物放在桌面上)的三視圖

學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。

作三視圖之前應(yīng)當細心觀察,認識了它的基本結(jié)構(gòu)特征后,再動手作圖。

3.三視圖與幾何體之間的相互轉(zhuǎn)化。

(1)投影出示圖片(課本P10,圖1.2-3)

請同學(xué)們思考圖中的三視圖表示的幾何體是什么?

(2)你能畫出圓臺的三視圖嗎?

(3)三視圖對于認識空間幾何體有何作用?你有何體會?

教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對上述問題的看法。

4.請同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。

(三)鞏固練習(xí)

課本P12練習(xí)1、2P18習(xí)題1.2A組1

(四)歸納整理

請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

(五)課外練習(xí)

1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。

2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。

高中數(shù)學(xué)教案詳案范文大全 篇5

教學(xué)目標:

①掌握對數(shù)函數(shù)的性質(zhì)。

②應(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值域及單調(diào)性。

③注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。

教學(xué)重點與難點:

對數(shù)函數(shù)的性質(zhì)的`應(yīng)用。

教學(xué)過程設(shè)計:

⒈復(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。

⒉開始正課

1比較數(shù)的大小

例1比較下列各組數(shù)的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學(xué)們觀察一下⑴中這兩個對數(shù)有何特征?

生:這兩個對數(shù)底相等。

師:那么對于兩個底相等的對數(shù)如何比大小?

生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數(shù)函數(shù)的單調(diào)性取決于底的大?。寒?調(diào)遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調(diào)遞增,所以loga5.1

板書:

解:Ⅰ)當0

∵5.1loga5.9

Ⅱ)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù)

∵5.1

師:請同學(xué)們觀察一下⑵中這三個對數(shù)有何特征?

生:這三個對數(shù)底、真數(shù)都不相等。

師:那么對于這三個對數(shù)如何比大小?

生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.51,

log0.50.6

板書:略。

師:比較對數(shù)值的大小常用方法:

①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函數(shù)的單調(diào)性比大小;

②借用“中間量”間接比大??;

③利用對數(shù)函數(shù)圖象的位置關(guān)系來比大小。

2函數(shù)的定義域,值域及單調(diào)性。

高中數(shù)學(xué)教案詳案范文大全 篇6

各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。

下面從教材分析、教學(xué)目標分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計、效果評價六方面進行說課。

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

(二)教學(xué)內(nèi)容

本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。

二、教學(xué)目標分析

根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認知規(guī)律,本節(jié)課的教學(xué)目標確定為:

知識目標——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

能力目標——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

情感目標——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強化學(xué)生參與意識及主體作用。

三、重難點分析

一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。

要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。

四、教法與學(xué)法分析

(一)學(xué)法指導(dǎo)

教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

(二)教法分析

本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

建構(gòu)主義學(xué)習(xí)理論認為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點,指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的`解法。

五、課堂設(shè)計

本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。

(一)創(chuàng)設(shè)情景,引出“三個一次”的關(guān)系

本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

為此,我設(shè)計了以下幾個問題:

1、請同學(xué)們解以下方程和不等式:

①2x-7=0;②2x-70;③2x-70

學(xué)生回答,我板書。

2、我指出:2x-70和2x-70的解實際上只需利用不等式基本性質(zhì)就容易得到。

3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學(xué)生可能感到很困惑。

4、為此,我引入一次函數(shù)y=2x-7,借助動畫從圖象上直觀認識方程和不等式的解,得出以下三組重要關(guān)系:

①2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸

交點的橫坐標。

②2x-70的解集正是函數(shù)y=2x-7的圖象

在x軸的上方的點的橫坐標的集合。

③2x-70的解集正是函數(shù)y=2x-7的圖象

在x軸的下方的點的橫坐標的集合。

三組關(guān)系的得出,實際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問題的興趣。此時,學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來求不等式x2-x-60的解集。

(二)比舊悟新,引出“三個二次”的關(guān)系

為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進行探究。

看函數(shù)y=x2-x-6的圖象并說出:

①方程x2-x-6=0的解是

x=-2或x=3 ;

②不等式x2-x-60的解集是

{x|x-2,或x3};

③不等式x2-x-60的解集是

{x|-23}。

此時,學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。

學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時,圖象與x軸有兩個交點;△=0時,圖象與x軸只有一個交點;△0時,圖象與x輛沒有交點。)請同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?

(三)歸納提煉,得出“三個二次”的關(guān)系

1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對位置關(guān)系,寫出相關(guān)不等式的解集。

2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項系數(shù)由負化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強調(diào);也有的學(xué)生提出畫出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應(yīng)給予肯定。)

(四)應(yīng)用新知,熟練掌握一元二次不等式的解集

借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認識,為鞏固所學(xué)知識,我們一起來完成以下例題:

例1、解不等式2x2-3x-20

解:因為Δ0,方程2x2-3x-2=0的解是

x1= ,x2=2

所以,不等式的解集是

{ x| x ,或x2}

例1的解決達到了兩個目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。

下面我們接著學(xué)習(xí)課本例2。

例2 解不等式-3x2+6x2

課本例2的出現(xiàn)恰當好處,一方面突出了“對于二次項系數(shù)是負數(shù)(即a0)的一元二次不等式,可以先把二次項系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對此例的解答極易出現(xiàn)寫錯解集(如出現(xiàn)“或”與“且”的錯誤)。

通過例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。

例3 解不等式4x2-4x+10

例4 解不等式-x2+2x-30

分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點,給予熱情表揚。

4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。

(五)總結(jié)

解一元二次不等式的“四部曲”:

(1)把二次項的系數(shù)化為正數(shù)

(2)計算判別式Δ

(3)解對應(yīng)的一元二次方程

(4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集

(六)作業(yè)布置

為了使所有學(xué)生鞏固所學(xué)知識,我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。

(1)必做題:習(xí)題1.5的1、3題

(2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實數(shù)k的取值范圍。

(七)板書設(shè)計

一元二次不等式解法(1)

五、教學(xué)效果評價

本節(jié)課立足課本,著力挖掘,設(shè)計合理,層次分明。以“三個一次關(guān)系→三個二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點,突破難點。在教學(xué)思想上既注重知識形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗求知的樂趣。

高中數(shù)學(xué)教案詳案范文大全 篇7

教學(xué)目的:

掌握圓的標準方程,并能解決與之有關(guān)的問題

教學(xué)重點:

圓的標準方程及有關(guān)運用

教學(xué)難點:

標準方程的靈活運用

教學(xué)過程:

一、導(dǎo)入新課,探究標準方程

二、掌握知識,鞏固練習(xí)

練習(xí):⒈說出下列圓的方程

⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3

⒉指出下列圓的圓心和半徑

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

⒊判斷3x-4y-10=0和x2+y2=4的位置關(guān)系

⒋圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

三、引伸提高,講解例題

例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

四、小結(jié)練習(xí)P771,2,3,4

五、作業(yè)P811,2,3,4

高中數(shù)學(xué)教案詳案范文大全 篇8

教學(xué)目標

1.明確等差數(shù)列的定義.

2.掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題

3.培養(yǎng)學(xué)生觀察、歸納能力.

教學(xué)重點

1. 等差數(shù)列的概念;

2. 等差數(shù)列的通項公式

教學(xué)難點

等差數(shù)列“等差”特點的理解、把握和應(yīng)用

教具準備

投影片1張

教學(xué)過程

(I)復(fù)習(xí)回顧

師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數(shù)列的特點,下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數(shù)列有什么共同的.特點?

1,2,3,4,5,6; ①

10,8,6,4,2,…; ②

生:積極思考,找上述數(shù)列共同特點。

對于數(shù)列①(1≤n≤6);(2≤n≤6)

對于數(shù)列②-2n(n≥1)(n≥2)

對于數(shù)列③(n≥1)(n≥2)

共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。

師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。

一、定義:

等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。

二、等差數(shù)列的通項公式

師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列的首項是,公差是d,則據(jù)其定義可得:

若將這n-1個等式相加,則可得:

即:即:即:……

由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項和公差d,便可求得其通項。

如數(shù)列①(1≤n≤6)

數(shù)列②:(n≥1)

數(shù)列③:(n≥1)

由上述關(guān)系還可得:即:則:=如:三、例題講解

例1:(1)求等差數(shù)列8,5,2…的第20項

(2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

解:(1)由n=20,得(2)由得數(shù)列通項公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。

(Ⅲ)課堂練習(xí)

生:(口答)課本P118練習(xí)3

(書面練習(xí))課本P117練習(xí)1

師:組織學(xué)生自評練習(xí)(同桌討論)

(Ⅳ)課時小結(jié)

師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。

即(n≥2)

②等差數(shù)列通項公式 (n≥1)

推導(dǎo)出公式:(V)課后作業(yè)

一、課本P118習(xí)題3.2 1,2

二、1.預(yù)習(xí)內(nèi)容:課本P116例2P117例4

2.預(yù)習(xí)提綱:

①如何應(yīng)用等差數(shù)列的定義及通項公式解決一些相關(guān)問題?

②等差數(shù)列有哪些性質(zhì)?

高中數(shù)學(xué)教案詳案范文大全 篇9

前言

為了更好地貫徹落實和科課程標準有關(guān)要求,促進廣大教師學(xué)習(xí)現(xiàn)代教學(xué)理論,進一步激發(fā)廣大教師課堂教學(xué)的創(chuàng)新意識,切實轉(zhuǎn)變教學(xué)觀念,積極探索新課程理念下的教與學(xué),有效解決教學(xué)實踐中存在的問題,促進課堂教學(xué)質(zhì)量的全面提高,在2007年由福建省普通教育教學(xué)研究室組織,舉辦了一次教學(xué)設(shè)計大賽活動。這次活動數(shù)學(xué)學(xué)科高中組共收到有49篇教學(xué)設(shè)計文章。獲獎文章推薦評審專家組本著公平、公正的原則,經(jīng)過認真的評審,全部作品均評出了相應(yīng)的獎項;專家組還為獲得一、二等獎的作品撰寫了點評。本稿收錄的作品全部是參加此次福建省教學(xué)設(shè)計競賽獲獎作者的文章。按照征文的規(guī)則,我們對入選作品的格式作了一些修飾,并經(jīng)過適當?shù)恼?,以饗讀者。

在此還需要說明的是,為了方便閱讀,獲獎文章的排序原則,并非按照獲獎名次的前后順序,而是按照高中數(shù)學(xué)新課程必修1—5的內(nèi)容順序,進行編排的。部分體現(xiàn)大綱教材內(nèi)容的.文章則排在后面。

不管你獲得的是哪個級別的獎項,你們都可以有成就感,因為那是你們用心、用汗?jié)补喑龅墓麑?它記錄了你們奉獻于數(shù)學(xué)教育事業(yè)的心路歷程,書中每一篇的教學(xué)設(shè)計都耐人尋味,都能帶給我們許多遐想和啟迪,你們是優(yōu)秀的,在你們未來悠遠的職業(yè)里程中,只要努力,將有更多的輝煌在等待著大家。謝謝你們!

1、集合與函數(shù)概念實習(xí)作業(yè)

一、教學(xué)內(nèi)容分析

《普通高中課程標準實驗教科書·數(shù)學(xué)(1)》(人教A版)第44頁。-----《實習(xí)作業(yè)》。本節(jié)課程體現(xiàn)數(shù)學(xué)文化的特色,學(xué)生通過了解函數(shù)的發(fā)展歷史進一步感受數(shù)學(xué)的魅力。學(xué)生在自己動手收集、整理資料信息的過程中,對函數(shù)的概念有更深刻的理解;感受新的學(xué)習(xí)方式帶給他們的學(xué)習(xí)數(shù)學(xué)的樂趣。

二、學(xué)生學(xué)習(xí)情況分析

該內(nèi)容在《普通高中課程標準實驗教科書·數(shù)學(xué)(1)》(人教A版)第44頁。學(xué)生第一次完成《實習(xí)作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗,所以需要教師精心設(shè)計,做好準備工作,充分體現(xiàn)教師的“導(dǎo)演”角色。特別在分組時注意學(xué)生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達能力等),選題時,各組之間盡量不要重復(fù),盡量多地選不同的題目,可以讓所有的學(xué)生在學(xué)習(xí)共享的過程中受到更多的數(shù)學(xué)文化的熏陶。

三、設(shè)計思想

《標準》強調(diào)數(shù)學(xué)文化的重要作用,體現(xiàn)數(shù)學(xué)的文化的價值。數(shù)學(xué)教育不僅應(yīng)該幫助學(xué)生學(xué)習(xí)和掌握數(shù)學(xué)知識和技能,還應(yīng)該有助于學(xué)生了解數(shù)學(xué)的價值。讓學(xué)生逐步了解數(shù)學(xué)的思想方法、理性精神,體會數(shù)學(xué)家的創(chuàng)新精神,以及數(shù)學(xué)文明的深刻內(nèi)涵。

四、教學(xué)目標

1.了解函數(shù)概念的形成、發(fā)展的歷史以及在這個過程中起重大作用的歷史事件和人物;

2.體驗合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識的快樂;

3.在合作形式的小組學(xué)習(xí)活動中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識、社會實踐技能和民主價值觀。

五、教學(xué)重點和難點

重點:了解函數(shù)在數(shù)學(xué)中的核心地位,以及在生活里的廣泛應(yīng)用;

難點:培養(yǎng)學(xué)生合作交流的能力以及收集和處理信息的能力。

六、教學(xué)過程設(shè)計

【課堂準備】

1.分組:4~6人為一個實習(xí)小組,確定一人為組長。教師需要做好協(xié)調(diào)工作,確保每位學(xué)生都參加。

2.選題:根據(jù)個人興趣初步確定實習(xí)作業(yè)的題目。教師應(yīng)該到各組中去了解選題情況,盡量多地選擇不同的題目。

喜歡《高中數(shù)學(xué)教案詳案范文大全》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼兒園教案,同時,yjs21.com編輯還為您精選準備了高中數(shù)學(xué)教案專題,希望您能喜歡!

相關(guān)推薦

  • 高中生物教案詳案大全(收藏2篇) 為有力保證事情或工作開展的水平質(zhì)量,常常要根據(jù)具體情況預(yù)先制定方案,一份好的方案一定會注重受眾的參與性及互動性。我們應(yīng)該怎么制定方案呢?下面是小編為大家收集的同課異構(gòu)活動方案,希望對大家有所幫助。高中生物教案詳案大全 篇1一、活動目標“同課異構(gòu)”的本身屬性決定了授課教師教學(xué)形式的多樣化,...
    2024-09-12 閱讀全文
  • 高中數(shù)學(xué)教案范例 以下是一篇網(wǎng)絡(luò)上非常出色的“高中數(shù)學(xué)教案”文章的介紹,建議您將此網(wǎng)頁添加到收藏夾,以便復(fù)習(xí)。制定教案和制作課件是我們教師的一項重要工作,因此我們每天都會按時按質(zhì)完成教案和課件。教師需要以教案為中心,把握課堂教學(xué)的重點和難點。...
    2023-12-16 閱讀全文
  • 高中必修一數(shù)學(xué)教案詳案(推薦11篇) 高中必修一數(shù)學(xué)教案詳案 篇1教學(xué)準備教學(xué)目標1、掌握平面向量的數(shù)量積及其幾何意義;2、掌握平面向量數(shù)量積的重要性質(zhì)及運算律;3、了解用平面向量的數(shù)量積可以處理垂直的問題;4、掌握向量垂直的條件。教學(xué)重難點教學(xué)重點:平面向量的數(shù)量積定義教學(xué)難點:平面向量數(shù)量積的定義...
    2024-09-26 閱讀全文
  • 大班數(shù)學(xué)詳案教案及教學(xué)反思《數(shù)一數(shù)》 活動設(shè)計背景 本學(xué)期,大班的孩子已經(jīng)開始學(xué)習(xí)數(shù)的分合和10以內(nèi)數(shù)的加減了,針對孩子們形象思維占主導(dǎo)地位的情況,我將數(shù)學(xué)內(nèi)容的學(xué)習(xí)融入故事、圖片、游戲等活動中,希望孩子們在輕松愉快的學(xué)習(xí)氛圍中不知不覺地...
    2019-12-23 閱讀全文
  • 大班數(shù)學(xué)教案詳案《分類》 設(shè)計意圖: 大班幼兒的認知、操作、邏輯思維能力在不斷提高;同時,他們不僅僅滿足于老師所告訴的、所傳授的,他們更希望通過自己的能力加以證實。因此,他們對操作比較感興趣。但由于幼兒各方面的發(fā)展還不成熟,他...
    2019-12-23 閱讀全文

為有力保證事情或工作開展的水平質(zhì)量,常常要根據(jù)具體情況預(yù)先制定方案,一份好的方案一定會注重受眾的參與性及互動性。我們應(yīng)該怎么制定方案呢?下面是小編為大家收集的同課異構(gòu)活動方案,希望對大家有所幫助。高中生物教案詳案大全 篇1一、活動目標“同課異構(gòu)”的本身屬性決定了授課教師教學(xué)形式的多樣化,...

2024-09-12 閱讀全文

以下是一篇網(wǎng)絡(luò)上非常出色的“高中數(shù)學(xué)教案”文章的介紹,建議您將此網(wǎng)頁添加到收藏夾,以便復(fù)習(xí)。制定教案和制作課件是我們教師的一項重要工作,因此我們每天都會按時按質(zhì)完成教案和課件。教師需要以教案為中心,把握課堂教學(xué)的重點和難點。...

2023-12-16 閱讀全文

高中必修一數(shù)學(xué)教案詳案 篇1教學(xué)準備教學(xué)目標1、掌握平面向量的數(shù)量積及其幾何意義;2、掌握平面向量數(shù)量積的重要性質(zhì)及運算律;3、了解用平面向量的數(shù)量積可以處理垂直的問題;4、掌握向量垂直的條件。教學(xué)重難點教學(xué)重點:平面向量的數(shù)量積定義教學(xué)難點:平面向量數(shù)量積的定義...

2024-09-26 閱讀全文

活動設(shè)計背景 本學(xué)期,大班的孩子已經(jīng)開始學(xué)習(xí)數(shù)的分合和10以內(nèi)數(shù)的加減了,針對孩子們形象思維占主導(dǎo)地位的情況,我將數(shù)學(xué)內(nèi)容的學(xué)習(xí)融入故事、圖片、游戲等活動中,希望孩子們在輕松愉快的學(xué)習(xí)氛圍中不知不覺地...

2019-12-23 閱讀全文

設(shè)計意圖: 大班幼兒的認知、操作、邏輯思維能力在不斷提高;同時,他們不僅僅滿足于老師所告訴的、所傳授的,他們更希望通過自己的能力加以證實。因此,他們對操作比較感興趣。但由于幼兒各方面的發(fā)展還不成熟,他...

2019-12-23 閱讀全文