幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

初中二元一次方程組教案(必備8篇)

發(fā)布時(shí)間:2024-10-10

作為一名教職工,時(shí)常要開(kāi)展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,借助教學(xué)設(shè)計(jì)可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)呢?以下是小編收集整理的二元一次方程組教學(xué)設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

初中二元一次方程組教案 篇1

教學(xué)目標(biāo):通過(guò)學(xué)生積極思考,互相討論,經(jīng)歷探索事物之間的數(shù)量關(guān)系,形成方程模型,解方程和運(yùn)用方程解決實(shí)際問(wèn)題的過(guò)程進(jìn)一步體會(huì)方程是刻劃現(xiàn)實(shí)世界的有效數(shù)學(xué)模型

重點(diǎn):讓學(xué)生實(shí)踐與探索,運(yùn)用二元一次方程解決有關(guān)配套與設(shè)計(jì)的應(yīng)用題

難點(diǎn):尋找等量關(guān)系

教學(xué)過(guò)程:

看一看:課本99頁(yè)探究2

問(wèn)題:1“甲、乙兩種作物的單位面積產(chǎn)量比是1:1、5”是什么意思?

2、“甲、乙兩種作物的總產(chǎn)量比為3:4”是什么意思?

3、本題中有哪些等量關(guān)系?

提示:若甲種作物單位產(chǎn)量是a,那么乙種作物單位產(chǎn)量是多少?

思考:這塊地還可以怎樣分?

練一練

一、某農(nóng)場(chǎng)300名職工耕種51公頃土地,計(jì)劃種植水稻、棉花、和蔬菜,已知種植植物每公頃所需的勞動(dòng)力人數(shù)及投入的設(shè)備獎(jiǎng)金如下表:

農(nóng)作物品種每公頃需勞動(dòng)力每公頃需投入獎(jiǎng)金

水稻4人1萬(wàn)元

棉花8人1萬(wàn)元

蔬菜5人2萬(wàn)元

已知該農(nóng)場(chǎng)計(jì)劃在設(shè)備投入67萬(wàn)元,應(yīng)該怎樣安排這三種作物的種植面積,才能使所有職工都有工作,而且投入的資金正好夠用?

問(wèn)題:題中有幾個(gè)已知量?題中求什么?分別安排多少公頃種水稻、棉花、和蔬菜?

教材106頁(yè):探究3:如圖,長(zhǎng)青化工廠與A、B兩地有公路、鐵路相連,這家工廠從A地購(gòu)買(mǎi)一批每噸1000元的原料運(yùn)回工廠,制成每噸8000元的產(chǎn)品運(yùn)到B地。公路運(yùn)價(jià)為1、5元/(噸?千米),鐵路運(yùn)價(jià)為1、2元/(噸?千米),這兩次運(yùn)輸共支出公路運(yùn)費(fèi)15000元,鐵路運(yùn)費(fèi)97200元。這批產(chǎn)品的銷(xiāo)售款比原料費(fèi)與運(yùn)輸費(fèi)的和多多少元?

初中二元一次方程組教案 篇2

一、說(shuō)教材

首先談?wù)勎覍?duì)教材的理解,《二元一次方程組》是人教版初中數(shù)學(xué)七年級(jí)下冊(cè)第八章第一節(jié)的內(nèi)容,本節(jié)課的內(nèi)容是二元一次方程組的概念以及二元一次方程組的解。在此之前學(xué)習(xí)了一元一次方程和解方程的步驟,為本節(jié)課打下了良好的基礎(chǔ)。學(xué)了本節(jié)課為后面的解二元一次方程的方法做下鋪墊。因此本節(jié)課有著承上啟下的作用。

二、說(shuō)學(xué)情

接下來(lái)談?wù)剬W(xué)生的實(shí)際情況。新課標(biāo)指出學(xué)生是教學(xué)的主體,所以要成為符合新課標(biāo)要求的教師,深入了解所面對(duì)的學(xué)生可以說(shuō)是必修課。本階段的學(xué)生已經(jīng)具備了一定的分析能力,與類(lèi)比學(xué)習(xí)能力。而且在生活中也為本節(jié)課積累了很多經(jīng)驗(yàn)。所以,學(xué)生對(duì)于二元一次方程組概念理解較為容易,找出方程組的解,相對(duì)來(lái)說(shuō)有難度,需要教師多引導(dǎo)。

三、說(shuō)教學(xué)目標(biāo)

根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):

(一)知識(shí)與技能

掌握二元一次方程與二元一次方程組的概念,并了解它們的解,能正確地找出二元一次方程組的解。

(二)過(guò)程與方法

通過(guò)類(lèi)比學(xué)習(xí)、自主探究、合作交流的過(guò)程,提升類(lèi)比學(xué)習(xí)的能力、培養(yǎng)探究的意識(shí)。

(三)情感態(tài)度價(jià)值觀

感受數(shù)學(xué)與生活的密切聯(lián)系,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。

四、說(shuō)教學(xué)重難點(diǎn)

我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說(shuō)一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是:二元一次方程與二元一次方程組的概念以及方程與方程組的解。教學(xué)難點(diǎn)是:二元一次方程組解的探究。

五、說(shuō)教法和學(xué)法

現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的.一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。

六、說(shuō)教學(xué)過(guò)程

下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過(guò)程的設(shè)計(jì)。

(一)新課導(dǎo)入

首先是導(dǎo)入環(huán)節(jié),我采用情境導(dǎo)入:展示籃球聯(lián)賽圖片,給出評(píng)分標(biāo)準(zhǔn)。并提出問(wèn)題:這個(gè)隊(duì)伍勝負(fù)場(chǎng)數(shù)分別是多少?

根據(jù)學(xué)生回答追問(wèn):用列方程解決問(wèn)題,題中有幾個(gè)未知數(shù)呢?從而引出本節(jié)課的課題《二元一次方程組》

這樣設(shè)計(jì)的好處是:利用籃球聯(lián)賽的圖片導(dǎo)入,并講清楚評(píng)分規(guī)則,不僅可以吸引學(xué)生探索的興趣,還可以培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)。

(二)新知探索

接下來(lái)是教學(xué)中最重要的新知探索環(huán)節(jié),主要通過(guò)三個(gè)活動(dòng)展開(kāi)學(xué)習(xí)。

活動(dòng)一:學(xué)生嘗試列方程解決問(wèn)題,看看在列方程過(guò)程中遇到了什么困難?同桌之間互相交流。

學(xué)生分析題意,發(fā)現(xiàn)有未知數(shù),可以使用列方程的方法解決問(wèn)題。當(dāng)讓學(xué)生自己動(dòng)手練習(xí)時(shí),他們會(huì)發(fā)現(xiàn),勝負(fù)的場(chǎng)數(shù)都是未知的。

此時(shí)教師可以引導(dǎo)學(xué)生發(fā)現(xiàn)和思考:要求的是兩個(gè)未知數(shù),能不能根據(jù)題意直接設(shè)兩個(gè)未知數(shù),使列方程變得容易呢?學(xué)生在這樣的提示下會(huì)有一定的想法,但對(duì)于列出二元一次方程組來(lái)說(shuō)還是比較困難的。

教師板書(shū)表格示意圖,引導(dǎo)學(xué)生通過(guò)題意,發(fā)現(xiàn)題干中包含的必須同時(shí)滿(mǎn)足的條件,得到兩組關(guān)系式并設(shè)出未知數(shù)完成表格。

活動(dòng)二:學(xué)生觀察兩個(gè)方程特點(diǎn),與一元一次方程有什么不同?并試著下定義。

在這里學(xué)生通過(guò)類(lèi)比學(xué)習(xí),能夠歸納出二元一次方程的概念:每個(gè)方程都含有兩個(gè)未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)都是1。了解了二元一次方程后,對(duì)于二元一次方程組的概念就可以很好的展開(kāi)了,對(duì)于本題列了兩個(gè)二元一次方程解決問(wèn)題,像這樣的方程組叫做二元一次方程組。

師生共同總結(jié)出二元一次方程與二元一次方程組的定義。

列出了二元一次方程組,要解決籃球聯(lián)賽的問(wèn)題,就要求出方程組的解,接下來(lái)進(jìn)行第三個(gè)活動(dòng)。

活動(dòng)三:完成表格,以二元一次方程組中的一個(gè)方程為例。小組合作,找出幾組整數(shù)解,并觀察哪一組解也符合另一個(gè)方程。

在這里解二元一次方程組,可以先將問(wèn)題簡(jiǎn)單化,先研究一個(gè)方程的解,找到幾組解后,再看哪一組解也符合第二個(gè)方程。也就是兩個(gè)方程的公共解。教師給出表格,小組在進(jìn)行合作時(shí),教師應(yīng)引導(dǎo)學(xué)生思考結(jié)合題意,兩個(gè)未知數(shù)應(yīng)取正整數(shù)。填完表格后,師生共同總結(jié)出二元一次方程解的定義。

教師繼續(xù)追問(wèn),哪一組的值也滿(mǎn)足第二個(gè)方程。師生共同總結(jié)出什么叫做二元一次方程組的解。

得到方程組的解,回歸情景得出實(shí)際問(wèn)題的答案。

設(shè)計(jì)意圖:通過(guò)三個(gè)活動(dòng)展開(kāi)本節(jié)課,不僅符合新課改的理念:學(xué)生是學(xué)習(xí)的主體,教師是教學(xué)活動(dòng)中的組織者、引導(dǎo)者、合作者,還能通過(guò)小組活動(dòng)、類(lèi)比學(xué)習(xí)等活動(dòng)豐富課堂。

(三)課堂練習(xí)

接下來(lái)是鞏固提高環(huán)節(jié)。

練習(xí):對(duì)下面的問(wèn)題,列出二元一次方程組,并根據(jù)問(wèn)題的實(shí)際意義,找出問(wèn)題的解。

加工某種產(chǎn)品需經(jīng)兩道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件?,F(xiàn)有7位工人參加這兩道工序,應(yīng)怎樣安排人力,才能使每天第一、第二道工序所完成的件數(shù)相等?

設(shè)計(jì)這道題可以讓學(xué)生感受數(shù)學(xué)與生活的密切聯(lián)系,學(xué)以致用。教師可以及時(shí)掌握學(xué)生本節(jié)課的學(xué)習(xí)情況,給予補(bǔ)充糾正。

(四)小結(jié)作業(yè)

在課程的最后我會(huì)提問(wèn):今天有什么收獲?

引導(dǎo)學(xué)生回顧:二元一次方程組的定義與二元一次方程組的解。

本節(jié)課的課后作業(yè)我設(shè)計(jì)為:

思考除了用列表找二元一次方程組的解,還有什么方法能找出解,能不能將它變成我們熟悉的一元一次方程求解。

設(shè)計(jì)意圖:本節(jié)課學(xué)生通過(guò)列表觀察得到了方程組的解,作業(yè)設(shè)計(jì)為讓學(xué)生思考解二元一次方程組的方法,并提示能不能把它變成熟悉的一元一次方程求解,為下節(jié)課的學(xué)習(xí)做下鋪墊。

初中二元一次方程組教案 篇3

教學(xué)目標(biāo)

1.會(huì)用代入法解二元一次方程組;

2.體會(huì)解二元一次方程組的 “消元思想”和“化未知數(shù)為已知”的化歸思想.

3.通過(guò)對(duì)方程中未知數(shù)特點(diǎn)的觀察和分析明,確解二元一次方程組的主要思路 是 “消元思想”和“化二元為一元”的化歸思想.

教學(xué)重難點(diǎn)

1.熟練的用代入法解二元一次方程組。

2.探索如何用代入法將“二元”轉(zhuǎn)化為“一元”的消元過(guò)程。

教學(xué)過(guò)程

一、創(chuàng)設(shè)問(wèn)題,引入新課

1.問(wèn)題1:籃球聯(lián)賽中,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)得2分,負(fù)一場(chǎng)得1分.某隊(duì)為了爭(zhēng)取較好的名次,想在全部20場(chǎng)比賽中得到38分,那么這個(gè)隊(duì)勝、負(fù)場(chǎng)數(shù)分別是多少?

解:設(shè)勝場(chǎng)數(shù)是x則負(fù)的場(chǎng)數(shù)是20-x 列方程為:2x+(20-x)=38.解得x=18,則負(fù)的場(chǎng)數(shù)為

20-x=20-18=2

2.問(wèn)題2:在上述問(wèn)題中,我們可以設(shè)出兩個(gè)未知數(shù),列出二元一次方程組,若設(shè)勝的場(chǎng)數(shù)是x,負(fù)的場(chǎng)數(shù)是y,則

x+y=20

2x+y=38

那么怎樣求解二元一次方程組呢?上面的二元一次方程組和一元一次方程有什么關(guān)系呢?

設(shè)計(jì)意圖:通過(guò)創(chuàng)設(shè)同一問(wèn)題分別列出一元一次方程與二元一次方程組 ,引導(dǎo)學(xué)生對(duì)兩者關(guān)聯(lián)認(rèn)識(shí),為后續(xù)代入消元法解二元一次方程作鋪墊。

二、學(xué)生探索,嘗試解決

交流問(wèn)題2:可以發(fā)現(xiàn),二元一次方程組中第一個(gè)方程x+y=20可的到y(tǒng)=20-x,將第2個(gè)方程2x+y=38中y換為20-x,這個(gè)方程就化為一元一次方程2x+(20-x)=38.

歸納:

二元一次方程組中有兩個(gè)未知數(shù),如果消去其中一個(gè)未知數(shù),將二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程,我們就可以先解出一個(gè)未知數(shù),然后再設(shè)法求另一個(gè)未知數(shù).這種將未知數(shù)的個(gè)數(shù)由多化少、逐一解決的思想方法,叫做消元思想.

歸納小結(jié):上面的解法,是把二元一次方程組中一個(gè)方程中的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來(lái),再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的 解.這種方法叫做代入消元法,簡(jiǎn)稱(chēng)代入法.

設(shè)計(jì)意圖:通過(guò)交流問(wèn)題2,引導(dǎo)學(xué)生將心中所想顯現(xiàn)出來(lái),代入消元法的步驟和功效逐步顯現(xiàn)出來(lái)。

三、典例交流,揭示規(guī)律

例1:用代入法解二元一次方程組x=y+3(1)

3x-8y=14(2)

解:把①代入②,得3(y+3)-8y=14,解得y=-1.把y=-1代人①,解得x=2,

所以這個(gè)方程組的解是 x=2,

y=-1

思考下列問(wèn)題

(1)選擇哪個(gè)方程代入另一個(gè)方程?目的是什么?

(2)為什么能代入?目的達(dá)到了嗎?

(3)只求出 y=-1 ,方程組解完了嗎? 把y=-1 代入哪個(gè)方程求x的值較簡(jiǎn)單?

(4)怎樣知道你運(yùn)算的結(jié)果是否正確?

反思:需檢驗(yàn),將 x=2,y=-1分別代入方程①②,看方程的左右兩邊是否相等,可以口算,也可以在 草稿紙上驗(yàn)算.【例2】用代入法解二元一次方程組x-y=3(1)

3x-8y=14(2)

思考:

(1)例1與例2有什么不同?(例1是用①直接代入②的,而例2的兩個(gè)方程都不具備這樣的條件.)

(2)如何變形?(把其中一個(gè)方程變形為例1中①的形式.)

(3)選擇哪個(gè)方程變形較簡(jiǎn)單?(方程①中的x的系數(shù)為1,故可以將方程①變形得x=3+y.)

(學(xué)生口述,教師板書(shū)完成)

用代入消元法解二元一次方程組的步驟:

(1)從方程組中選取一個(gè)系數(shù)比較簡(jiǎn)單的方程,把其中的某一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來(lái).(變)

(2)把(1)中所得的方程代入另一個(gè)方程,消去一個(gè)未知數(shù).(代)

(3)解所得到的'一元一次方程,求得一個(gè)未知數(shù)的值.(求)

(4)把所求得的一個(gè)未知數(shù)的值代入(1)中求得的方程,求出另一個(gè)未知數(shù)的值,從而確定方程組的解.(解)

設(shè)計(jì)意圖:進(jìn)一步加強(qiáng)利用代入消元法解方程,逐步抽象出代入消元法解方程的一般步驟提高學(xué)生的分析能力。

四、變式訓(xùn)練,深化提高

用代入法解下面方程組

設(shè)計(jì)意圖:通過(guò)學(xué)生演練展示,幫助學(xué)生鞏固用代入法解二元一次方程組的步驟。

五、師生共進(jìn),反思小結(jié)1、本節(jié)主要學(xué)習(xí)用代入法解二元一次方程組

2、主要的解題思想方法是消元思想。

3、代入消元法解二元一次方程組需要注意的問(wèn)題.

(1)用代入法解二元一次方程組時(shí),常選用系數(shù)比較簡(jiǎn)單的方程變形,這有利于正確、簡(jiǎn)捷地消元.

(2)由一個(gè)方程變形得到的只含有一個(gè)未知數(shù)的代數(shù)式必須代入到另一個(gè)方程中去,否則會(huì)出現(xiàn)一個(gè)恒等式.

(3)方程組解的表示方法,應(yīng)該用大括號(hào)把一對(duì)未知數(shù)的值連在一起,表示同時(shí)成立,不要寫(xiě)成x=?y=?

六、布置作業(yè):

習(xí)題8.2 1,2題

七、板書(shū)設(shè)計(jì)

初中二元一次方程組教案 篇4

教學(xué)目標(biāo)

1.會(huì)列出二元一次方程組解簡(jiǎn)單應(yīng)用題,并能檢驗(yàn)結(jié)果的合理性。

2.知道二元一次方程組是反映現(xiàn)實(shí)世界量之間相等關(guān)系的一種有效的數(shù)學(xué)模型。

3.引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),滲透將來(lái)未知轉(zhuǎn)達(dá)化為已知的辯證思想。

教學(xué)重點(diǎn)

1.列二元一次方程組解簡(jiǎn)單問(wèn)題。

2.徹底理解題意

教學(xué)難點(diǎn)

找等量關(guān)系列二元一次方程組。

教學(xué)過(guò)程

一、情境引入。

小剛與小玲一起在水果店買(mǎi)水果,小剛買(mǎi)了3千克蘋(píng)果,2千克梨,共花了18.8元。小玲買(mǎi)了2千克蘋(píng)果,3千克梨,共花了18.2元?;丶衣飞希麄冇錾狭撕门笥研≤?,小軍問(wèn)蘋(píng)果、梨各多少錢(qián)1千克?他們不講,只講各自買(mǎi)的幾千克水果和總共的錢(qián),要小軍猜。聰明的同學(xué)們,小軍能猜出來(lái)嗎?

二、建立模型。

1.怎樣設(shè)未知數(shù)?

2.找本題等量關(guān)系?從哪句話(huà)中找到的?

3.列方程組。

4.解方程組。

5.檢驗(yàn)寫(xiě)答案。

思考:怎樣用一元一次方程求解?

比較用一元一次方程求解,用二元一次方程組求解誰(shuí)更容易?

三、練習(xí)。

1.根據(jù)問(wèn)題建立二元一次方程組。

(1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。

(2)80班共有64名學(xué)生,其中男生比女生多8人,求這個(gè)班男生人數(shù),女生人數(shù)。

(3)已知關(guān)于求x、y的方程,

是二元一次方程。求a、b的值。

2.P38練習(xí)第1題。

四、小結(jié)。

小組討論:列二元一次方程組解應(yīng)用題有哪些基本步驟?

五、作業(yè)。

P42。習(xí)題2.3A組第1題。

后記:

2.3二元一次方程組的應(yīng)用

初中二元一次方程組教案 篇5

一.教學(xué)目標(biāo)

(一)教學(xué)知識(shí)點(diǎn)

1.代入消元法解二元一次方程組.

2.解二元一次方程組時(shí)的消元思想,化未知為已知的化歸思想.

(二)能力訓(xùn)練要求

1.會(huì)用代入消元法解二元一次方程組.

2.了解解二元一次方程組的消元思想,初步體會(huì)數(shù)學(xué)研究中化未知為已知的化歸思想.

(三)情感與價(jià)值觀要求

1.在學(xué)生了解二元一次方程組的消元思想,從而初步理解化未知為已知和化復(fù)雜問(wèn)題為簡(jiǎn)單問(wèn)題的化歸思想中,享受學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,提高學(xué)習(xí)數(shù)學(xué)的信心.

2.培養(yǎng)學(xué)生合作交流,自主探索的良好習(xí)慣.

二.教學(xué)重點(diǎn)

1.會(huì)用代入消元法解二元一次方程組.

2.了解解二元一次方程組的消元思想,初步體現(xiàn)數(shù)學(xué)研究中化未知為已知的化歸思想.

三.教學(xué)難點(diǎn)

1.消元的思想.

2.化未知為已知的化歸思想.

四.教學(xué)方法

啟發(fā)自主探索相結(jié)合.

教師引導(dǎo)學(xué)生回憶一元一次方程解決實(shí)際問(wèn)題的方法并從中啟發(fā)學(xué)生如果能將二元一次方程組轉(zhuǎn)化為一元一次方程.二元一次方程便可獲解,從而通過(guò)學(xué)生自主探索總結(jié)用代入消元法解二元一次方程組的步驟.

五.教具準(zhǔn)備

投影片兩張:

第一張:例題(記作7.2 A);

第二張:?jiǎn)栴}串(記作7.2 B).

六.教學(xué)過(guò)程

Ⅰ.提出疑問(wèn),引入新課

[師生共憶](méi)上節(jié)課我們討論過(guò)一個(gè)希望工程義演的問(wèn)題;沒(méi)去觀看義演的成人有x個(gè),兒童有y個(gè),我們得到了方程組 成人和兒童到底去了多少人呢?

[生]在上一節(jié)課的做一做中,我們通過(guò)檢驗(yàn) 是不是方程x+y=8和方程5x+3y=34,得知這個(gè)解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組解的定義得出 是方程組 的解.所以成人和兒童分別去了5個(gè)人和3個(gè)人.

[師]但是,這個(gè)解是試出來(lái)的.我們知道二元一次方程的解有無(wú)數(shù)個(gè).難道我們每個(gè)方程組的解都去這樣試?

[生]太麻煩啦.

[生]不可能.

[師]這就需要我們學(xué)習(xí)二元一次方程組的解法.

Ⅱ.講授新課

[師]在七年級(jí)第一學(xué)期我們學(xué)過(guò)一元一次方程,也曾碰到過(guò)希望工程義演問(wèn)題,當(dāng)時(shí)是如何解的呢?

[生]解:設(shè)成人去了x個(gè),兒童去了(8-x)個(gè),根據(jù)題意,得:

5x+3(8-x)=34

解得x=5

將x=5代入8-x=8-5=3

答:成人去了5個(gè),兒童去了3個(gè).

[師]同學(xué)們可以比較一下:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對(duì)你解二元一次方程組有何啟示?

[生]列二元一次方程組設(shè)出有兩個(gè)未知數(shù)成人去了x個(gè),兒童去了y個(gè).列一元一次方程設(shè)成人去了x個(gè),兒童去了(8-x)個(gè).y應(yīng)該等于(8-x).而由二元一次方程組的一個(gè)方程x+y=8根據(jù)等式的性質(zhì)可以推出y=8-x.

[生]我還發(fā)現(xiàn)一元一次方程中5x+3(8-x)=34與方程組中的第二個(gè)方程5x+3y=34相比較,把5x+3y=34中的y用8-x代替就轉(zhuǎn)化成了一元一次方程.

[師]太好了.我們發(fā)現(xiàn)了新舊知識(shí)之間的聯(lián)系,便可尋求到解決新問(wèn)題的方法即將新知識(shí)轉(zhuǎn)化為舊知識(shí)便可.如何轉(zhuǎn)化呢?

[生]上一節(jié)課我們就已知道方程組的兩個(gè)未知數(shù)所包含的意義是相同的.所以將 中的①變形,得y=8-x ③我們把y=8-x代入方程②,即將②中的y用8-x代替,這樣就有5x+3(8-x)=34.二元化成一元.

[師]這位同學(xué)很善于思考.他用了我們?cè)跀?shù)學(xué)研究中化未知為已知的化歸思想,從而使問(wèn)題得到解決.下面我們完整地解一下這個(gè)二元一次方程組.

解:

由①得 y=8-x ③

將③代入②得

5x+3(8-x)=34

解得x=5

把x=5代入③得y=3.

所以原方程組的解為

下面我們?cè)囍眠@種方法來(lái)解答上一節(jié)的誰(shuí)的包裹多的問(wèn)題.

[師生共析]解二元一次方程組:

分析:我們解二元一次方程組的第一步需將其中的一個(gè)方程變形用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),把表示了的未知數(shù)代入未變形的方程中,從而將二元一次方程組轉(zhuǎn)化為一元一次方程.

解:由①得x=2+y ③

將③代入②得(2+y)+1=2(y-1)

解得y=5

把y=5代入③,得

x=7.

所以原方程組的解為 即老牛馱了7個(gè)包裹,小馬馱了5個(gè)包裹.

[師]在解上面兩個(gè)二元一次方程組時(shí),我們都是將其中的一個(gè)方程變形,即用其中一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),然后代入第二個(gè)未變形的方程,從而由二元轉(zhuǎn)化為一元而得到消元的目的.我們將這種方法叫代入消元法.這種解二元一次方程組的思想為消元思想.我們?cè)賮?lái)看兩個(gè)例子.

出示投影片(7.2 A)

[例題]解方程組

(1)

(2)

(由學(xué)生自己完成,兩個(gè)同學(xué)板演).

解:(1)將②代入①,得

3 +2y=8

3y+9+4y=16

7y=7

y=1

將y=1代入②,得

x=2

所以原方程組的解是

(2)由②,得x=13-4y ③

將③代入①,得

2(13-4y)+3y=16

-5y=-10

y=2

將y=2代入③,得

x=5

所以原方程組的解是

[師]下面我們來(lái)討論幾個(gè)問(wèn)題:

出示投影片(7.2 B)

(1)上面解方程組的基本思路是什么?

(2)主要步驟有哪些?

(3)我們觀察例1和例2的解法會(huì)發(fā)現(xiàn),我們?cè)诮夥匠探M之前,首先要觀察方程組中未知數(shù)的特點(diǎn),盡可能地選擇變形后的方程較簡(jiǎn)單和代入后化簡(jiǎn)比較容易的方程變形,這是關(guān)鍵的一步.你認(rèn)為選擇未知數(shù)有何特點(diǎn)的方程變形好呢?

(由學(xué)生分組討論,教師深入?yún)⑴c到學(xué)生討論中,發(fā)現(xiàn)學(xué)生在自主探索、討論過(guò)程中的獨(dú)特想法)

[生]我來(lái)回答第一問(wèn):解二元一次方程組的基本思路是消元,把二元變?yōu)橐辉?

[生]我們組總結(jié)了一下解上述方程組的步驟:第一步:在已知方程組的兩個(gè)方程中選擇一個(gè)適當(dāng)?shù)姆匠?,把它變形為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù).

第二步:把表示另一個(gè)未知數(shù)的代數(shù)式代入沒(méi)有變形的另一個(gè)方程,可得一個(gè)一元一次方程.

第三步:解這個(gè)一元一次方程,得到一個(gè)未知數(shù)的值.

第四步:把求得的未知數(shù)的值代回到原方程組中的任意一個(gè)方程或變形后的方程(一般代入變形后的方程),求得另一個(gè)未知數(shù)的值.

第五步:用{把原方程組的解表示出來(lái).

第六步:檢驗(yàn)(口算或筆算在草稿紙上進(jìn)行)把求得的解代入每一個(gè)方程看是否成立.

[師]這個(gè)組的同學(xué)總結(jié)的步驟真棒,甚至連我們平時(shí)容易忽略的檢驗(yàn)問(wèn)題也提了出來(lái),很值得提倡.在我們數(shù)學(xué)學(xué)習(xí)的過(guò)程中,應(yīng)該養(yǎng)成反思自己解答過(guò)程,檢驗(yàn)自己答案正確與否的習(xí)慣.

[生]老師,我代表我們組來(lái)回答第三個(gè)問(wèn)題.我們認(rèn)為用代入消元法解二元一次方程組時(shí),盡量選取一個(gè)未知數(shù)的分?jǐn)?shù)是1的方程進(jìn)行變形;若未知數(shù)的系數(shù)都不是1,則選取系數(shù)的.絕對(duì)值較小的方程變形.但我們也有一個(gè)問(wèn)題要問(wèn):在例2中,我們選擇②變形這是無(wú)可厚非的,把②變形后代入①中消元得到的是一元一次方程系數(shù)都為整數(shù)也較簡(jiǎn)便.可例1中,雖然可直接把②代入①中消去x,可得到的是含有分母的一元一次方程,并不簡(jiǎn)便,有沒(méi)有更簡(jiǎn)捷的方法呢?

[師]這個(gè)問(wèn)題提的太好了.下面同學(xué)們分組討論一下.如果你發(fā)現(xiàn)了更好的解法,請(qǐng)把你的解答過(guò)程寫(xiě)到黑板上來(lái).

[生]解:由②得2x=y+3 ③

③兩邊同時(shí)乘以2,得

4x=2y+6 ④

由④得2y=4x-6

把⑤代入①得

3x+(4x-6)=8

解得7x=14,x=2

把x=2代入③得y=1.

所以原方程組的解為

[師]真了不起,能把我們所學(xué)的知識(shí)靈活應(yīng)用,而且不拘一格,將2y整體上看作一個(gè)未知數(shù)代入方程①,這是一個(gè)科學(xué)的發(fā)明.

Ⅲ.隨堂練習(xí)

課本P192

1.用代入消元法解下列方程組

解:(1)

將①代入②,得

x+2x=12

x=4.

把x=4代入①,得

y=8

所以原方程組的解為

(2)

將①代入②,得

4x+3(2x+5)=65

解得x=5

把x=5代入①得

y=15

所以原方程組的解為

(3)

由①,得x=11-y ③

把③代入②,得

11-y-y=7

y=2

把y=2代入③,得

x=9

所以原方程組的解為

(4)

由②,得x=3-2y ③

把③代入①,得

3(3-2y)-2y=9

得y=0

把y=0代入③,得x=3

所以原方程組的解為

注:在隨堂練習(xí)中,可以鼓勵(lì)學(xué)生通過(guò)自主探索與交流,各個(gè)學(xué)生消元的具體方法可能不同,不必強(qiáng)調(diào)解答過(guò)程統(tǒng)一.

Ⅳ.課時(shí)小結(jié)

這節(jié)課我們介紹了二元一次方程組的第一種解法代入消元法.了解到了解二元一次方程組的基本思路是消元即把二元變?yōu)橐辉?主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程的解.

Ⅴ.課后作業(yè)

1.課本習(xí)題7.2

2.解答習(xí)題7.2第3題

Ⅵ.活動(dòng)與探究

已知代數(shù)式x2+px+q,當(dāng)x=-1時(shí),它的值是-5;當(dāng)x=-2時(shí),它的值是4,求p、q的值.

過(guò)程:根據(jù)代數(shù)式值的意義,可得兩個(gè)未知數(shù)都是p、q的方程,即

當(dāng)x=-1時(shí),代數(shù)式的值是-5,得

(-1)2+(-1)p+q=-5 ①

當(dāng)x=-2時(shí),代數(shù)式的值是4,得

(-2)2+(-2)p+q=4 ②

將①、②兩個(gè)方程整理,并組成方程組

解方程組,便可解決.

結(jié)果:由④得q=2p

把q=2p代入③,得

-p+2p=-6

解得p=-6

把p=-6代入q=2p=-12

所以p、q的值分別為-6、-12.

七.板書(shū)設(shè)計(jì)

7.2 解二元一次方程組(一)

一、希望工程義演

二、誰(shuí)的包裹多問(wèn)題

三、例題

四、解方程組的基本思路:消元即二元一元

五、解二元一次方程組的基本步驟

初中二元一次方程組教案 篇6

教學(xué)目標(biāo):

1使學(xué)生會(huì)借助二元一次方程組解決簡(jiǎn)單的實(shí)際問(wèn)題,讓學(xué)生再次體會(huì)二元一次方程組與現(xiàn)實(shí)生活的聯(lián)系和作用

2通過(guò)應(yīng)用題教學(xué)使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性

3體會(huì)列方程組比列一元一次方程容易

4進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問(wèn)題為數(shù)學(xué)問(wèn)題的能力和分析問(wèn)題,解決問(wèn)題的能力

重點(diǎn)與難點(diǎn):

重點(diǎn):能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;

難點(diǎn):正確發(fā)找出問(wèn)題中的兩個(gè)等量關(guān)系

課前自主學(xué)習(xí)

1.列方程組解應(yīng)用題是把“未知”轉(zhuǎn)化為“已知”的重要方法,它的關(guān)鍵是把已知量和未知量聯(lián)系起來(lái),找出題目中的()

2.一般來(lái)說(shuō),有幾個(gè)未知量就必須列幾個(gè)方程,所列方程必須滿(mǎn)足:

(1)方程兩邊表示的是()量

(2)同類(lèi)量的單位要()

(3)方程兩邊的數(shù)值要相符。

3.列方程組解應(yīng)用題要注意檢驗(yàn)和作答,檢驗(yàn)不僅要求所得的解是否( ),更重要的是要檢驗(yàn)所求得的結(jié)果是否( )

4.一個(gè)籠中裝有雞兔若干只,從上面看共42個(gè)頭,從下面看共有132只腳,則雞有( ),兔有( )

新課探究

看一看

問(wèn)題:

1題中有哪些已知量?哪些未知量?

2題中等量關(guān)系有哪些?

3如何解這個(gè)應(yīng)用題?

本題的等量關(guān)系是(1)()

(2)()

解:設(shè)平均每只母牛和每只小牛1天各需用飼料為xkg和ykg

根據(jù)題意列方程,得

解這個(gè)方程組得

答:每只母牛和每只小牛1天各需用飼料為( )和( ),飼料員李大叔估計(jì)每天母牛需用飼料18—20千克,每只小牛一天需用7到8千克與計(jì)算()出入。(“有”或“沒(méi)有”)

練一練:

1、某所中學(xué)現(xiàn)在有學(xué)生4200人,計(jì)劃一年后初中在樣生增加8%,高中在校生增加11%,這樣全校學(xué)生將增加10%,這所學(xué)?,F(xiàn)在的初中在校生和高中在校生人數(shù)各是多少人?

2、有大小兩輛貨車(chē),兩輛大車(chē)與3輛小車(chē)一次可以支貨15。50噸,5輛大車(chē)與6輛小車(chē)一次可以支貨35噸,求3輛大車(chē)與5輛小車(chē)一次可以運(yùn)貨多少?lài)?

3、某工廠第一車(chē)間比第二車(chē)間人數(shù)的少30人,如果從第二車(chē)間調(diào)出10人到第一車(chē)間,則第一車(chē)間的人數(shù)是第二車(chē)間的,問(wèn)這兩車(chē)間原有多少人?

4、某運(yùn)輸隊(duì)送一批貨物,計(jì)劃20天完成,實(shí)際每天多運(yùn)送5噸,結(jié)果不但提前2天完成任務(wù)并多運(yùn)了10噸,求這批貨物有多少?lài)?原計(jì)劃每天運(yùn)輸多少?lài)?

小結(jié)

用方程組解應(yīng)用題的一般步驟是什么?

8.3實(shí)際問(wèn)題與二元一次方程組(2)

教學(xué)目標(biāo):

1、經(jīng)歷用方程組解決實(shí)際問(wèn)題的過(guò)程,體會(huì)方程組是刻畫(huà)現(xiàn)實(shí)世界的有效數(shù)學(xué)模型;

2、能夠找出實(shí)際問(wèn)題中的已知數(shù)和未知數(shù),分析它們之間的數(shù)量關(guān)系,列出方程組;

3、學(xué)會(huì)開(kāi)放性地尋求設(shè)計(jì)方案,培養(yǎng)分析問(wèn)題,解決問(wèn)題的能力

重點(diǎn)與難點(diǎn):

重點(diǎn):能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;

難點(diǎn):正確發(fā)找出問(wèn)題中的兩個(gè)等量關(guān)系

課前自主學(xué)習(xí)

1.甲乙兩人的年收入之比為4:3,支出之比為8:5,一年間兩人各存了5000元(兩人剩余的錢(qián)都存入了銀行),則甲乙兩人的年收入分別為()元和()元。

2.在一堆球中,籃球與排球之比為贊助單位又送來(lái)籃球隊(duì)10個(gè)排球10個(gè),這時(shí)籃球與排球的數(shù)量之比為27:40,則原有籃球()個(gè),排球()個(gè)。

3.現(xiàn)在長(zhǎng)為18米的鋼材,要據(jù)成10段,每段長(zhǎng)只能為1米或2米,則這個(gè)問(wèn)題中的等量關(guān)系是(1)1米的段數(shù)+()=10(2)1米的鋼材總長(zhǎng)+()=18

初中二元一次方程組教案 篇7

一、說(shuō)教材分析

1、教材的地位和作用

二元一次方程組是初中數(shù)學(xué)的重點(diǎn)內(nèi)容之一,是一元一次方程知識(shí)的延續(xù)和提高,又是學(xué)習(xí)其他數(shù)學(xué)知識(shí)的基礎(chǔ)。本節(jié)課是在學(xué)生學(xué)習(xí)了一元一次方程的基礎(chǔ)上,繼續(xù)學(xué)習(xí)另一種方程及方程組,它是學(xué)生系統(tǒng)學(xué)習(xí)二元一次方程組知識(shí)的前提和基礎(chǔ)。通過(guò)類(lèi)比,讓學(xué)生從中充分體會(huì)二元一次方程組,理解并掌握解二元一次方程組的基本概念,為以后函數(shù)等知識(shí)的學(xué)習(xí)打下基礎(chǔ)。

2、教學(xué)目標(biāo)

知識(shí)目標(biāo):通過(guò)實(shí)例了解二元一次方程和它的解,二元一次方程組和它的解。

能力目標(biāo):會(huì)判斷一組未知數(shù)的值是否為二元一次方程及方程組的解。會(huì)在實(shí)際問(wèn)題中列二元一次方程組。

情感目標(biāo):使學(xué)生通過(guò)交流、合作、討論獲取成功體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)知識(shí)的興趣,增強(qiáng)學(xué)生的自信心。

3、重點(diǎn)、 難點(diǎn)

重點(diǎn):二元一次方程和二元一次方程的解,二元一次方程組和二元一次方程組的解的概念。

難點(diǎn):在實(shí)際生活中二元一次方程組的應(yīng)用。

二、教法

現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、言道者,教學(xué)的一切活動(dòng)必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,以問(wèn)題的提出、問(wèn)題的解決為主線(xiàn),始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”設(shè)置問(wèn)題,倡導(dǎo)學(xué)生主動(dòng)參與教學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題,在引導(dǎo)分析時(shí),給學(xué)生留出足夠的思考時(shí)間和空間,讓學(xué)生去聯(lián)想、探索,從真正意義上完成對(duì)知識(shí)的自我建構(gòu)。

另外,在教學(xué)過(guò)程中,我采用多媒體輔助教學(xué),以直觀呈現(xiàn)教學(xué)素材,從而更好發(fā)激發(fā)學(xué)生的學(xué)習(xí)興趣,增大教學(xué)容量,提高教學(xué)效率。

三、學(xué)法

“問(wèn)題”是數(shù)學(xué)教學(xué)的心臟,活動(dòng)是數(shù)學(xué)教學(xué)中的靈魂。所以我在學(xué)生思維最近發(fā)展區(qū)內(nèi)設(shè)置并提出一系列問(wèn)題,通過(guò)數(shù)學(xué)活動(dòng),引導(dǎo)學(xué)生:自主性學(xué)習(xí),合作式學(xué)習(xí),探究式學(xué)習(xí)等,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的數(shù)學(xué)思維和參與度,力求學(xué)生在“雙基”數(shù)學(xué)能力和理性精神方面得到一定發(fā)展。

四、教學(xué)過(guò)程

新課標(biāo)指出,數(shù)學(xué)教學(xué)過(guò)程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動(dòng)的過(guò)程,是教師和學(xué)生間互動(dòng)的過(guò)程,是師生共同發(fā)展的過(guò)程。為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排以下教學(xué)環(huán)節(jié):

(1)復(fù)習(xí)舊知,溫故知新

籃球聯(lián)賽中,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)得2分。負(fù)一場(chǎng)得1分,某隊(duì)為了爭(zhēng)取較好的名次,想在全部22場(chǎng)比賽中得到40分,那么這個(gè)隊(duì)勝負(fù)場(chǎng)數(shù)分別是多少?

設(shè)計(jì)意圖:構(gòu)建注意主張教學(xué)應(yīng)從學(xué)生已有的知識(shí)體系出發(fā),方程是本節(jié)課深入研究二元一次方程組的認(rèn)知基礎(chǔ),這樣設(shè)計(jì)有利于引導(dǎo)學(xué)生順利地進(jìn)入學(xué)習(xí)情境。

(2)創(chuàng)設(shè)情境,提出問(wèn)題

這個(gè)問(wèn)題中包含了哪些必須同時(shí)滿(mǎn)足的條件?設(shè)勝的場(chǎng)數(shù)是x,負(fù)的場(chǎng)數(shù)是y,你能用方程把這些條件表示出來(lái)嗎?

由問(wèn)題知道,題中包含兩個(gè)必須同時(shí)滿(mǎn)足的條件:

勝的場(chǎng)數(shù)+負(fù)的場(chǎng)數(shù)=總場(chǎng)數(shù),

勝場(chǎng)積分+負(fù)場(chǎng)積分=總積分。

這兩個(gè)條件可以用方程

x+y=22

2x+y=40

表示:

上面兩個(gè)方程中,每個(gè)方程都含有兩個(gè)未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程。

把兩個(gè)方程合在一起,寫(xiě)成

x+y=22

2x+y=40

像這樣,把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組。

設(shè)計(jì)意圖:以問(wèn)題串的形式創(chuàng)設(shè)情境,引起學(xué)生的認(rèn)知沖突,使學(xué)生對(duì)舊知識(shí)產(chǎn)生設(shè)疑,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,通過(guò)情境創(chuàng)設(shè),學(xué)生已激發(fā)了強(qiáng)烈的求知欲望,產(chǎn)生了強(qiáng)勁的學(xué)習(xí)動(dòng)力,此時(shí)我把學(xué)生帶入下一環(huán)節(jié)。

(3)發(fā)現(xiàn)問(wèn)題,探求新知

滿(mǎn)足方程①,且符合問(wèn)題的實(shí)際意義的x、y的值有哪些?把它們填入表中。

初中二元一次方程組教案 篇8

一、教材分析

1.教材的地位和作用

本節(jié)課是華東師大版七年級(jí)數(shù)學(xué)下冊(cè)第七章《二元一次方程組》中第二節(jié)的第四課時(shí),它是在學(xué)習(xí)了代入消元法和加減消元法的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。能夠靈活熟練地掌握加減消元法,在解方程組時(shí)會(huì)更簡(jiǎn)便準(zhǔn)確,也是為以后學(xué)習(xí)用待定系數(shù)法求一次函數(shù)、二次函數(shù)關(guān)系式打下了基礎(chǔ),特別是在聯(lián)系實(shí)際,應(yīng)用方程組解決問(wèn)題方面,它會(huì)起到事半功倍的效果。

2.教學(xué)目標(biāo)

(1)知識(shí)目標(biāo):進(jìn)一步了解加減消元法,并能夠熟練地運(yùn)用這種方法解較為復(fù)雜的二元一次方程組。

(2)能力目標(biāo):經(jīng)歷探索用“加減消元法”解二元一次方程組的過(guò)程,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力和創(chuàng)新意識(shí)。

(3)情感目標(biāo):在自由探索與合作交流的過(guò)程中,不斷讓學(xué)生體驗(yàn)獲得成功的喜悅,培養(yǎng)學(xué)生的合作精神,激發(fā)學(xué)生的學(xué)習(xí)熱情,增強(qiáng)學(xué)生的自信心。

3.教學(xué)重點(diǎn)難點(diǎn)

教學(xué)重點(diǎn):利用加減法解二元一次方程組。

教學(xué)難點(diǎn):二元一次方程組加減消元法的靈活應(yīng)用。

4.教學(xué)準(zhǔn)備:多媒體、課件。

二、學(xué)情分析

我所任教的初一(2)班學(xué)生基礎(chǔ)比較好,他們已經(jīng)具備了一定的探索能力,也初步養(yǎng)成了合作交流的習(xí)慣。大多數(shù)學(xué)生的好勝心比較強(qiáng),性格比較活潑,他們希望有展現(xiàn)自我才華的機(jī)會(huì),但是對(duì)于七年級(jí)的鄉(xiāng)鎮(zhèn)中學(xué)的學(xué)生來(lái)說(shuō),他們獨(dú)立分析問(wèn)題的能力和靈活應(yīng)用的能力還有待提高,很多時(shí)候還需要教師的點(diǎn)撥和引導(dǎo)。因此,我遵循學(xué)生的認(rèn)識(shí)規(guī)律,由淺入深,適時(shí)引導(dǎo),調(diào)動(dòng)學(xué)生的積極性,并適當(dāng)?shù)亟o予表?yè)P(yáng)和鼓勵(lì),借此增強(qiáng)他們的自信心。

三、教法與學(xué)法分析

說(shuō)教法:?jiǎn)l(fā)引導(dǎo)法,任務(wù)驅(qū)動(dòng)法,情境教學(xué)法,演示法。

說(shuō)學(xué)法:合作探究法,觀察比較法。

四.教學(xué)設(shè)計(jì)

(一)復(fù)習(xí)舊知

1、解二元一次方程組的基本思想是什么?(消元)

2、前面我們學(xué)過(guò)了哪些消元方法?(“單身”代入法、“朋友”加減法)

下列兩題可以用什么方法來(lái)求解?

2x3y=16①

X-y=3②3

學(xué)生:觀察、思考、討論和交流,然后口述解題方法。

教師:肯定、鼓勵(lì)、板書(shū)。

[設(shè)計(jì)意圖:通過(guò)復(fù)習(xí),讓學(xué)生鞏固了相關(guān)的舊知識(shí),同時(shí)也為本節(jié)課做了鋪墊]

(二)探究新知

1、情境導(dǎo)入

師:我們用代入法來(lái)解題第一步是找“單身”,用加減法來(lái)解題第一步是找“朋友”,再用同減異加的法則進(jìn)行解答,那么我們一起來(lái)看一下這道題目:

問(wèn):這題能否用“單身”代入法或“朋友”加減法來(lái)求解?為什么?導(dǎo)入課題,板書(shū)課題。[設(shè)計(jì)意圖:利用富有挑戰(zhàn)性的問(wèn)題,激發(fā)學(xué)生的好奇心和求知欲,可引發(fā)學(xué)生對(duì)問(wèn)題的思考,并促進(jìn)學(xué)生運(yùn)用已有的知識(shí)去發(fā)現(xiàn)和獲取新的知識(shí)]

2、合作探究

(讓學(xué)生分組討論交流,主動(dòng)探索出解法,教師巡視指導(dǎo)并肯定和鼓勵(lì)他們。)

總結(jié)解題方法:如果一個(gè)方程組中x或y的系

數(shù)不相同時(shí),也就是說(shuō)它們不是“朋友”時(shí),先要想辦法把“陌生人”變成“朋友”。

方法一:將方程①變形后消去x。

方法二:將方程②變形后消去y。

讓學(xué)生嘗試著寫(xiě)出解題過(guò)程,請(qǐng)兩位同學(xué)上臺(tái)展示結(jié)果,集體訂正。請(qǐng)做對(duì)的同學(xué)舉手,全班同學(xué)都為自己鼓鼓掌,做對(duì)的表示給自己一次祝賀,暫時(shí)還沒(méi)做對(duì)的表示給自己一次鼓勵(lì)。[設(shè)計(jì)意圖:讓學(xué)生探索這道過(guò)渡性的題目,是遵循了學(xué)生的認(rèn)識(shí)規(guī)律,由淺入深,為學(xué)習(xí)下面這道例題做好準(zhǔn)備,同時(shí)通過(guò)變“陌生人”為“朋友”這一設(shè)想過(guò)程,也培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)。]

3、例題探索例5、解方程組:3x-4y=10①

5x6y=42②

師:這道題的x與y的系數(shù)有何特點(diǎn)?如何變成“朋友”?

(讓學(xué)生思考、分組討論、交流,教師引導(dǎo)并板書(shū)解題過(guò)程。)

[設(shè)計(jì)意圖:讓學(xué)生通過(guò)探討,逐步發(fā)現(xiàn)可以用加減消元法去解較為復(fù)雜的二元一次方程組,也讓他們?cè)俅误w會(huì)了消元化歸的數(shù)學(xué)思想,同時(shí)也培養(yǎng)了學(xué)生分析問(wèn)題和解決問(wèn)題的能力。在整個(gè)探討的過(guò)程中也增強(qiáng)了學(xué)生的信心,學(xué)生有了發(fā)現(xiàn)的樂(lè)趣和成功的喜悅后,會(huì)產(chǎn)生一種想表現(xiàn)自己的欲望。]

4、試一試

學(xué)生完成課本第30頁(yè)的試一試,讓學(xué)生用本節(jié)課的加減消元法和前面例2的代入消元法進(jìn)行比較,看一看哪種方法更簡(jiǎn)便?

(小組之間互相交流,寫(xiě)出解答過(guò)程,并請(qǐng)一些同學(xué)談?wù)勛约旱目捶?,教師展示兩種解題方法讓學(xué)生們進(jìn)行比較。)

[設(shè)計(jì)意圖:通過(guò)對(duì)比兩種方法,使學(xué)生更清晰地掌握知識(shí),當(dāng)學(xué)生發(fā)現(xiàn)本節(jié)課的方法比例2的方法更簡(jiǎn)便時(shí),學(xué)生會(huì)產(chǎn)生一種用本節(jié)課的知識(shí)去解題的沖動(dòng)。]

(三)反饋矯正

解方程組:

(給學(xué)生提供展現(xiàn)自我才華的機(jī)會(huì),以前后兩桌為一個(gè)小組進(jìn)行討論交流,此時(shí)可輕聲播放一首鋼琴曲,為學(xué)生創(chuàng)造一種輕松和諧的學(xué)習(xí)氛圍)

讓兩個(gè)同學(xué)上臺(tái)解題,教師巡視,并每一個(gè)組選兩名代表檢查本組同學(xué)的完成情況和及時(shí)幫助有困難的同學(xué),待全班同學(xué)完成后,讓臺(tái)上這兩位同學(xué)試著當(dāng)一下小老師,為全班同學(xué)講解自己所做的題目,教師為評(píng)委,進(jìn)行點(diǎn)評(píng)并總結(jié),全班同學(xué)為他們鼓掌。

[設(shè)計(jì)意圖:由于學(xué)生人數(shù)較多,教師不能兼顧每個(gè)學(xué)生,所以讓學(xué)生自做自講,培養(yǎng)了學(xué)生綜合能力的同時(shí),也活躍了課堂氣氛。選代表巡視并幫助有困難的同學(xué),會(huì)讓學(xué)生感受到老師對(duì)他們的重視,這樣就能讓他們主動(dòng)參與到課堂中來(lái)。同時(shí)也培養(yǎng)了學(xué)生的合作精神和激發(fā)了學(xué)生的學(xué)習(xí)熱情。]

(四)課堂小結(jié):學(xué)完這節(jié)課,大家有什么收獲?請(qǐng)同學(xué)們談?wù)剬?duì)這節(jié)課的體會(huì)。

[設(shè)計(jì)意圖:加深對(duì)本節(jié)知識(shí)的理解和記憶,培養(yǎng)學(xué)生歸納、概括能力。]

(五)布置作業(yè):

必做題:課本第31頁(yè)的練習(xí)。

選做題:

(2)

[設(shè)計(jì)意圖:進(jìn)一步鞏固本節(jié)課知識(shí)的同時(shí),也給學(xué)生留下思考的余地和空間,學(xué)生是帶著問(wèn)題走進(jìn)課堂,現(xiàn)在又帶著新的問(wèn)題走出課堂。]

五、板書(shū)設(shè)計(jì):

二元一次方程組的解法(四)

找“朋友”——變“陌生人”為“朋友”——同減異加

例題分析習(xí)題分析

[設(shè)計(jì)意圖:為了更好地突出本節(jié)課的教學(xué)重點(diǎn)和讓學(xué)生更明確本節(jié)課的教學(xué)目標(biāo)。]

喜歡《初中二元一次方程組教案(必備8篇)》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼兒園教案,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了二元一次方程組教案專(zhuān)題,希望您能喜歡!

相關(guān)推薦

  • 一元二次方程教案必備13篇 以下是幼兒教師教育網(wǎng)的編輯為大家整理的“一元二次方程教案”。上課之前充分準(zhǔn)備好所需的教案和課件是非常重要的,每位教師都需要完成這項(xiàng)任務(wù)。編寫(xiě)出優(yōu)質(zhì)的教案和課件可以避免老師忽略重要內(nèi)容。未來(lái)我們將繼續(xù)分享相關(guān)方面的內(nèi)容!...
    2023-10-29 閱讀全文
  • 初中二元一次方程教案(匯集8篇) 作為一名教職工,時(shí)常要開(kāi)展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,借助教學(xué)設(shè)計(jì)可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)呢?以下是小編收集整理的二元一次方程組教學(xué)設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。初中二元一次方程教案 篇1一、教學(xué)目標(biāo)1、通過(guò)與一元一次方程的比較,能說(shuō)出二元一次方程...
    2024-09-14 閱讀全文
  • 初中數(shù)學(xué)二元一次方程教案模板(必備七篇) 作為一名教職工,時(shí)常要開(kāi)展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,借助教學(xué)設(shè)計(jì)可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)呢?以下是小編收集整理的二元一次方程組教學(xué)設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。初中數(shù)學(xué)二元一次方程教案模板 篇1教學(xué)目標(biāo)1、認(rèn)識(shí)二元一次方程和二元一次方程組.2...
    2024-09-06 閱讀全文
  • 初中二元一次方程組教案一等獎(jiǎng)(收藏四篇) 作為一名老師,編寫(xiě)教案是必不可少的,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么什么樣的教案才是好的呢?以下是小編為大家收集的初中數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。初中二元一次方程組教案一等獎(jiǎng) 篇1教學(xué)目標(biāo):1、使學(xué)生學(xué)會(huì)較熟煉地運(yùn)用切線(xiàn)的判定方法和切線(xiàn)的性質(zhì)證明問(wèn)題.2、掌握...
    2024-10-05 閱讀全文
  • 初中二元一次方程組教案大全(通用六篇) 作為一名教職工,時(shí)常要開(kāi)展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,借助教學(xué)設(shè)計(jì)可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)呢?以下是小編收集整理的二元一次方程組教學(xué)設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。初中二元一次方程組教案大全 篇1二元一次方程組是一元一次方程教學(xué)的延續(xù)與深化。很多一元一次...
    2024-09-27 閱讀全文

以下是幼兒教師教育網(wǎng)的編輯為大家整理的“一元二次方程教案”。上課之前充分準(zhǔn)備好所需的教案和課件是非常重要的,每位教師都需要完成這項(xiàng)任務(wù)。編寫(xiě)出優(yōu)質(zhì)的教案和課件可以避免老師忽略重要內(nèi)容。未來(lái)我們將繼續(xù)分享相關(guān)方面的內(nèi)容!...

2023-10-29 閱讀全文

作為一名教職工,時(shí)常要開(kāi)展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,借助教學(xué)設(shè)計(jì)可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)呢?以下是小編收集整理的二元一次方程組教學(xué)設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。初中二元一次方程教案 篇1一、教學(xué)目標(biāo)1、通過(guò)與一元一次方程的比較,能說(shuō)出二元一次方程...

2024-09-14 閱讀全文

作為一名教職工,時(shí)常要開(kāi)展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,借助教學(xué)設(shè)計(jì)可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)呢?以下是小編收集整理的二元一次方程組教學(xué)設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。初中數(shù)學(xué)二元一次方程教案模板 篇1教學(xué)目標(biāo)1、認(rèn)識(shí)二元一次方程和二元一次方程組.2...

2024-09-06 閱讀全文

作為一名老師,編寫(xiě)教案是必不可少的,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么什么樣的教案才是好的呢?以下是小編為大家收集的初中數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。初中二元一次方程組教案一等獎(jiǎng) 篇1教學(xué)目標(biāo):1、使學(xué)生學(xué)會(huì)較熟煉地運(yùn)用切線(xiàn)的判定方法和切線(xiàn)的性質(zhì)證明問(wèn)題.2、掌握...

2024-10-05 閱讀全文

作為一名教職工,時(shí)常要開(kāi)展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,借助教學(xué)設(shè)計(jì)可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)呢?以下是小編收集整理的二元一次方程組教學(xué)設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。初中二元一次方程組教案大全 篇1二元一次方程組是一元一次方程教學(xué)的延續(xù)與深化。很多一元一次...

2024-09-27 閱讀全文