等腰三角課件。
教案是老師上課之前需要備好的課件,每位老師都應(yīng)該他細設(shè)計教案課件。?精心制作的教學(xué)教案有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,老師在寫教案課件的時候要注意什么?以下是幼兒教師教育網(wǎng)編輯為您整理的一系列與“等腰三角形課件”有關(guān)的內(nèi)容,請注意下文僅供參考并非絕對可信!
重點與難點分析:
本節(jié)內(nèi)容的重點是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù),此定理為證明線段相等提供了又一種方法,這是本節(jié)的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關(guān)系經(jīng)常用到此推論.
本節(jié)內(nèi)容的難點是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時候,經(jīng)?;煜?,幫助學(xué)生認識判定與性質(zhì)的區(qū)別,這是本節(jié)的難點.另外本節(jié)的文字敘述題也是難點之一,和上節(jié)結(jié)合讓學(xué)生逐步掌握解題的思路方法.由于知識點的增加,題目的復(fù)雜程度也提高,一定要學(xué)生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.
教法建議:
本節(jié)課教學(xué)方法主要是“以學(xué)生為主體的討論探索法”。在數(shù)學(xué)教學(xué)中要避免過多告訴學(xué)生現(xiàn)成結(jié)論。提倡教師鼓勵學(xué)生討論解決問題的方法,引導(dǎo)他們探索數(shù)學(xué)的內(nèi)在規(guī)律。具體說明如下:
學(xué)生學(xué)習(xí)過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學(xué)生口述完了,接下來問:此命題是否為真命?等同學(xué)們證明完了,找一名學(xué)生代表發(fā)言.最后找一名學(xué)生用文字口述定理的內(nèi)容。這樣很自然就得到了等腰三角形的`判定定理.這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),滿打滿算了學(xué)生的認識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會。
(2)采用“類比”的學(xué)習(xí)方法,獲取知識。
由性質(zhì)定理的學(xué)習(xí),我們得到了幾個推論,自然想到:根據(jù)等腰三角形的判定定理,我們能得到哪些特殊的結(jié)論或者說哪些推論呢?這里先讓學(xué)生發(fā)表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學(xué)生提到的不完整,教師可以做適當?shù)狞c撥引導(dǎo)。
為了使學(xué)生對本節(jié)課有一個完整的認識,便于今后的應(yīng)用,教師提出如下問題,讓學(xué)生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據(jù)? ?(2)怎樣判定一個三角形是等邊三角形?
一.教學(xué)目標:
1.使學(xué)生掌握等腰三角形的判定定理及其推論;
2.掌握等腰三角形判定定理的運用;
3.通過例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問題解決問題的能力;
4.通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;
5.通過知識的縱橫遷移感受數(shù)學(xué)的辯證特征.
估計學(xué)生能用自己的語言說出,這里重點復(fù)習(xí)怎樣分清題設(shè)和結(jié)論。
(2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗它的逆命題是否為真命題?
啟發(fā)學(xué)生用自己的語言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:
1.等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.
(簡稱“等角對等邊”).
由學(xué)生說出已知、求證,使學(xué)生進一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語言的方法.
教師可引導(dǎo)學(xué)生分析:
聯(lián)想證有關(guān)線段相等的知識知道,先需構(gòu)成以AB、AC為對應(yīng)邊的全等三角形.因為已知∠B=∠C,沒有對應(yīng)相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應(yīng)從A點引起.再讓學(xué)生回想等腰三角形中常添的輔助線,學(xué)生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.
注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆.
一、教學(xué)目標:
1、了解作為證明基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書寫格式。
2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。3、結(jié)合實例休會反證的含義。
二、教學(xué)重點:
了解作為證明基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書寫格式。教學(xué)難點:能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
三、教學(xué)方法:觀察法。
四、教學(xué)過程:
復(fù)習(xí):1、 什么是等腰三角形?2、 你會畫一個等腰三角形嗎?并把你畫的等腰三角形栽剪下來。3、試用折紙的辦法回憶等腰三角形有哪些性質(zhì)?新課講解:在《證明(一)》一章中,我們已經(jīng)證明了有關(guān)平行線的一些結(jié)論,運用下面的公理和已經(jīng)證明的定理,我們還可以證明有關(guān)三角形的一些結(jié)論。同學(xué)們和我一起來回憶上學(xué)期學(xué)過的公理w 本套教材選用如下命題作為公理 :w 1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行; w 2.兩條平行線被第三條直線所截,同位角相等; w 3.兩邊夾角對應(yīng)相等的兩個三角形全等; (SAS)w 4.兩角及其夾邊對應(yīng)相等的兩個三角形全等; (ASA)w 5.三邊對應(yīng)相等的兩個三角形全等; (SSS)w 6.全等三角形的對應(yīng)邊相等,對應(yīng)角相等. 由公理5、3、4、6可容易證明下面的推論:推論 兩角及其中一角的對邊對應(yīng)相等的'兩個三角形全等。(AAS)證明過程:已知:∠A=∠D,∠B=∠E,BC=EF求證:△ABC≌△DEF證明:∵∠A=∠D,∠B=∠E(已知)∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形內(nèi)角和等于180°)∠C=180°-(∠A+∠B)∠F=180°-(∠D+∠E)∠C=∠F(等量代換)BC=EF(已知)△ABC≌△DEF(ASA)這個推論雖然簡單,但也應(yīng)讓學(xué)生進行證明,以熟悉的基本要求和步驟,為下面的推理證明做準備。
五、議一議:
(1)還記得我們探索過的等腰三角形的性質(zhì)嗎?(2)你能利用已有的公理和定理證明這些結(jié)論嗎?等腰三角形(包括等邊三角形)的性質(zhì)學(xué)生已經(jīng)探索過,這里先讓學(xué)生盡可能回憶出來,然后再考慮哪些能夠立即證明。定理:等腰三角形的兩個底角相等。這一定理可以簡單敘述為:等邊對等角。已知:如圖,在ABC中,AB=AC。求證:∠B=∠C我們剛才利用折疊的方法說明了這兩個底角相等。實際上,折痕將等腰三角形分成了兩個全等三角形。能否通過作一條線段,得到兩個全等的三角形,從而證明這兩個底角相等呢?證明:取BC的中點D,連接AD?!逜B=AC,BD=CD,AD=AD,∴△ABC△≌△ACD (SSS)∴∠B=∠C (全等三角形的對應(yīng)邊角相等)讓同學(xué)們通過探索、合作交流找出其他的證明方法。想一想:在上圖中,線段AD還具有怎樣的性質(zhì)?為什么?由此你能得到什么結(jié)論?應(yīng)讓學(xué)生回顧前面的證明過程,思考線段AD具有的性質(zhì)和特征,從而得到結(jié)論,這一結(jié)合通常簡述為“三線合一”。推論 等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合。隨堂練習(xí):做教科書第4頁第1,2題。課堂小結(jié):通過本課的學(xué)習(xí)我們了解了作為基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書寫格式。經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。探體會了反證法的含義。五、課外作業(yè):教科書第5頁第1,2題。
六、板述設(shè)計:
七、課后記:
一、教材分析
教材是教師教學(xué)的基本依據(jù),因此,教師必須把握教材,了解教材的內(nèi)容體系與脈絡(luò)。
首先, 我們來分析教材的地位與作用: 等腰三角形是在學(xué)習(xí)了全等三角形的判定及性質(zhì)與軸對稱之后編排的,它不僅是對前面所學(xué)知識的延伸應(yīng)用,同時也是今后探究線段相等、角相等以及兩直線垂直等的重要依據(jù),它所應(yīng)用的觀察-發(fā)現(xiàn)-猜想-論證的數(shù)學(xué)思想方法是今后研究數(shù)學(xué)的基本思想方法。因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。
基于以上分析,根據(jù)新課標的要求,結(jié)合學(xué)生的具體實際,我制定了如下教學(xué)目標:
知識技能:掌握等腰三角形的性質(zhì),運用等腰三角形的性質(zhì)進行證明和計算。
數(shù)學(xué)思考: 使學(xué)生經(jīng)歷知識的形成和發(fā)展過程,發(fā)展合情推理和演繹推理能力,培養(yǎng)主動探究的習(xí)慣。
問題解決: 通過學(xué)生體驗發(fā)現(xiàn)問題,提出問題及解決問題的全過程,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力。
情感態(tài)度: 通過學(xué)生參與數(shù)學(xué)活動,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲,體驗獲得成功的樂趣,鍛煉克服困難的意志,建立學(xué)好數(shù)學(xué)的自信心.
本節(jié)課的重點為等腰三角形的性質(zhì)及其應(yīng)用,我將通過創(chuàng)設(shè)情境和解決問題來突出重點。由于現(xiàn)階段學(xué)生把文字命題翻譯成數(shù)學(xué)符號語言的能力有待提高,所以本節(jié)課的難點在于等腰三角形性質(zhì)的證明,我將通過折紙實驗和小組合作探究來突破難點。
二、學(xué)情分析:
學(xué)生是教學(xué)工作的落腳點,是備課活動的最終服務(wù)對象。現(xiàn)階段學(xué)生已了解全等三角形和軸對稱圖形的相關(guān)知識,這個階段學(xué)生的思維以形象思維為主,他們好奇愛問、求知欲強、想像力豐富,會進行簡單的說理,但他們對如何從實際問題中抽象出數(shù)學(xué)問題,建立數(shù)學(xué)模型的能力較差。
三、教法學(xué)法分析:
教需有法,教無定法;大法必依,小法必活。
根據(jù)學(xué)生的具體情況和本節(jié)課的特點,我將采用“探索、歸納與合作交流”相結(jié)合的方法,以學(xué)生主動參與為前提、自主學(xué)習(xí)為途徑、合作交流為形式,培養(yǎng)學(xué)生動手、動腦、合作、交流,為學(xué)生的終身學(xué)習(xí)奠定基礎(chǔ)。
對于本節(jié)課的教學(xué),我從興趣著手,讓學(xué)生在自主探究中經(jīng)歷知識的形成、發(fā)展過程,并使其思維能力在小組合作交流中得到鍛煉.
為了達到更好的教學(xué)效果,本節(jié)課我將采用師生互動、生生互動的教學(xué)組織形式.
四、教學(xué)過程設(shè)計
也就是說課的重頭戲,我的教學(xué)過程將圍繞以下四個環(huán)節(jié)展開:創(chuàng)設(shè)情境、導(dǎo)入新課;合作交流、探究新知;體驗新知,學(xué)以致用;小結(jié)升華、布置作業(yè)。首先進入第一個環(huán)節(jié):創(chuàng)設(shè)情境,導(dǎo)入新課:
具體生動的情境具有很強的感染力和說服力,可以觸及到學(xué)生的內(nèi)心深處,使其思想與本節(jié)課的內(nèi)容—等腰三角形發(fā)生聯(lián)結(jié).所以,上課伊始,在美妙的音樂中,我會用課件展示生活中含有等腰三角形模型的一些圖片。
之后聯(lián)系已學(xué)的等腰三角形的定義,我會向?qū)W生介紹 腰 底邊 頂角 底角 等相關(guān)概念,并給學(xué)生設(shè)疑:等腰三角形作為一種特殊的三角形,有沒有自己特殊的性質(zhì)呢?從而引出本節(jié)課的內(nèi)容。(板書)
荷蘭數(shù)學(xué)家弗賴登塔爾曾說過: “學(xué)習(xí)數(shù)學(xué)唯一正確的方法是實現(xiàn)再創(chuàng)造,也就是由學(xué)生本人把要學(xué)的東西自己去發(fā)現(xiàn)或創(chuàng)造出來,教師的任務(wù)則是引導(dǎo)和幫助學(xué)生去進行這種再創(chuàng)造的工作,而不是把現(xiàn)成的知識灌輸給學(xué)生?!?/p>
為此,我設(shè)置了合作交流、探究新知這一環(huán)節(jié)并通過以下四個活動展開:剪等腰三角形 實驗探究—等腰三角形性質(zhì) 概括總結(jié)—等腰三角形性質(zhì) 推理證明—等腰三角形性質(zhì)
首先我將帶領(lǐng)學(xué)生進入活動1: 剪等腰三角形
為了提高學(xué)生的動手能力,使學(xué)生從本質(zhì)上認識等腰三角形,我讓學(xué)生拿出事先準備好的長方形紙片,分組活動,剪等腰三角形。
剪完以后,我會請各小組推薦一名代表上臺展示所剪三角形,并講解自己的剪法,學(xué)生的想像力是相當豐富的,剪的方法多種多樣,在這里我僅展示了以下四種剪法:
(1) (2) (3) (4)
如圖(1)的操作,剪出的是等腰直角三角形 ,圖(2)中,學(xué)生先畫出了一個等
腰三角形,再把它剪下來,圖(3)為教材中的剪法,得到了這樣一個等腰三角形,按圖(4)的操作可以得到兩個三角形,將它們拼在一起則為等腰三角形。為方便下一步使用,對于采用第(4)種剪法的學(xué)生,我會建議他們用第(3)種剪法再剪一次。
對于活動1的處理,我跟教材上是不同的。大家都知道,教材知識具有系統(tǒng)性,一般編寫得比較簡練。教師不是教教材,而是用教材創(chuàng)造性地去教.我之所以這樣設(shè)計,一是培養(yǎng)學(xué)生的發(fā)散思維,二是讓學(xué)生明白剪腰三角形有很多方法,辨析最簡單的方法。
接下來進入活動2: 實驗探究—等腰三角形的性質(zhì)
讓學(xué)生將剛才所剪的等腰三角形標上字母后,對折成兩個全等的三角形,分小組觀察并完成事先準備好的實驗單,在實驗單上,我設(shè)置了2個問題:
((1)等腰三角形ABC是軸對稱圖形嗎?
(2)對折后的△ABC重合的部分是什么?
之后,各小組推薦一名代表上臺,在投影儀下展示他們的探究結(jié)果。根據(jù)學(xué)生所填實驗單,我會引導(dǎo)學(xué)生將符號語言轉(zhuǎn)化為自然語言, △ABC兩底角相等是顯而易見的,我會引導(dǎo)學(xué)生發(fā)現(xiàn):折痕AD在△ABC中具有三重身份。
通過前2個活動的鋪墊,在活動3,讓學(xué)生概括總結(jié)出等腰三角形的性質(zhì):(1)等腰三角形的兩個底角相等; (2)等腰三角形的頂角平分線、底邊上中線、底邊上的高相互重合.
通過前3個活動,讓學(xué)生經(jīng)歷了發(fā)現(xiàn)問題、提出問題、解決問題的全過程,教會了他們怎樣進行數(shù)學(xué)思考。
數(shù)學(xué)知識具有高度的嚴謹性,我們得到的實驗結(jié)果需要理論上加以推證,因此,我設(shè)計了活動4: 推理證明—等腰三角形性質(zhì)
性質(zhì)1的證明對于現(xiàn)階段學(xué)生有2個難點:一是將文字性命題轉(zhuǎn)化為符號語言,二是怎樣添加輔助線,在這個環(huán)節(jié)為突破第1個難點,我會先就性質(zhì)1 “等腰三角形的兩個底角相等”的條件和結(jié)論對學(xué)生進行提問,引導(dǎo)學(xué)生完成轉(zhuǎn)化。
為了突破第二個難點,我會提示學(xué)生,由前面試驗中的折痕我們?nèi)菀紫氲竭^A點添加輔助線,由于△ABC得折痕具有三重身份,所以性質(zhì)1的證明方法不止一種,讓他們體會條條道路通羅馬的道理。安排學(xué)生分組討論并發(fā)言之后,我會用板書示范一種證明過程,另外兩種方法證明過程由學(xué)生類比完成。
教師多1分精心的預(yù)設(shè),課堂就多1份動態(tài)的生成,學(xué)生就會多一1份發(fā)展。所以,在學(xué)生體驗成功的喜悅之時,我會乘勝追擊,反問學(xué)生:前面3種證明方法都借助了輔助線,不作輔助線你能證明性質(zhì)1嗎?一石激起千層浪,再次激起了學(xué)生的求知欲。
我預(yù)測,學(xué)生很難想到不作輔助線如何完成性質(zhì)1的證明,其實,只要將△ABC看作兩個三角形 ABC和ACB,并證明它們?nèi)燃纯?。這種證法培養(yǎng)了學(xué)生的發(fā)散思維,啟發(fā)學(xué)生要敢于打破陳規(guī),張開想像的翅膀。在此,我之所以這樣設(shè)計,是想以教師教學(xué)方式的轉(zhuǎn)變促進學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變,使學(xué)生走出思維定勢,給學(xué)生一個活性的大腦。
性質(zhì)1證明完畢,我會提出問題:受性質(zhì)1的證明的啟發(fā),你能證明性質(zhì)2(等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合)嗎?我會引導(dǎo)學(xué)生把性質(zhì)2分解為3個命題,讓學(xué)生分組討論證明。
通過實驗探究,邏輯推理,得到了性質(zhì)1和性質(zhì)2,性質(zhì)1,我們又簡稱 等邊對等角,性質(zhì)2,又簡稱 三線合一。至此,探究新知環(huán)節(jié)已經(jīng)完成。
學(xué)生對知識的掌握是通過“學(xué)得”和“習(xí)得”而來的,為了鞏固本節(jié)課所學(xué)知識,我設(shè)置了體驗新知,學(xué)以致用環(huán)節(jié), 本環(huán)節(jié)按照循序漸進原則設(shè)置了2個練習(xí)題和1個思考題,它們由淺入深,由易到難,各有側(cè)重。練習(xí)1作為性質(zhì)1的有效補充,提示學(xué)生等邊對等角這一性質(zhì)必須在同一個等腰三角形中才可使用,強調(diào)審題的重要性;
練習(xí)2直接來自課本,它的設(shè)置,是為了鞏固和應(yīng)用 “等邊對等角”,培養(yǎng)學(xué)生的轉(zhuǎn)化思想和方程思想。
之后,我又給了一道思考題,讓學(xué)生利用剛學(xué)到的知識,做一個用來測量屋頂?shù)臋M梁是否水平的工具?將枯燥的數(shù)學(xué)問題賦予于有趣的實際背景,同時激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣讓學(xué)生充分感受本節(jié)課內(nèi)容在解決實際問題中的作用。
為了拓寬學(xué)生的知識面,我上網(wǎng)查閱了資料,有關(guān)等腰三角形的面積說,以等腰三角形的底邊代表人的遺傳因素,兩腰分別代表飲食營養(yǎng)和身心健康,那么等腰三角形的面積越大,人的壽命就越長,怎樣擴大等腰三角形的面積從而延長壽命呢?我會讓有興趣的同學(xué)在課下上網(wǎng)查閱。
葉瀾教授說:一個教師寫一輩子教案不一定成為名師,如果一個教師寫三年的反思,有可能成為名師。因此,反思是進步的階梯。
本環(huán)節(jié)中,我會先帶領(lǐng)學(xué)生對本節(jié)課內(nèi)容作出小結(jié),之后讓學(xué)生暢所欲言,對自己說:我有什么收獲,對老師說:我有什么疑惑,對同學(xué)說:我有什么溫馨提示。同時給學(xué)生提供一個充分從事數(shù)學(xué)活動的機會,體現(xiàn)了學(xué)生是學(xué)習(xí)的主人的理念。
作業(yè)設(shè)計是教師了解、掌握學(xué)生學(xué)習(xí)情況的一把尺子。這個環(huán)節(jié)遵循因材施教的原則,必作題體現(xiàn)新課標下落實“人人都能獲得良好的數(shù)學(xué)教育”,選做題則讓“不同的人在數(shù)學(xué)上得到不同的發(fā)展”, 體現(xiàn)分層思想。讓學(xué)生不僅學(xué)會,而且會學(xué),最終達到樂學(xué)的目的.
五.板書設(shè)計
板書是課堂教學(xué)的縮影,是把握教學(xué)重點的示意圖,也是提示教學(xué)難點的輻射源。由于借助了多媒體輔助教學(xué),我的板書將分為2個區(qū)域,第一個區(qū)域,是等腰三角形的性質(zhì),突出了重點,第二個區(qū)域是性質(zhì)1的示范證明,突破了難點
教學(xué)目標
1、掌握證明的基本步驟和書寫格式。
2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
3、結(jié)合實例體會反證法的含義。
教學(xué)重點
等腰三角形的關(guān)性質(zhì)定理和判定定理。
教學(xué)難點
能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
教學(xué)方法
教學(xué)后記
教學(xué)內(nèi)容及過程
教師活動學(xué)生活動
一、等腰三角形性質(zhì)的探究
1.讓學(xué)生回憶上節(jié)課的教學(xué)內(nèi)容,引導(dǎo)學(xué)生思考從等腰三角形中能找到哪些相等的線段。
2.播放課件,結(jié)合剛才的問題講解例1的命題,并為后面將此性質(zhì)拓展埋下伏筆。
3.分別演示:
∠ABC,∠ACE=∠ACB,k=,時,BD是否與CE相等。引導(dǎo)學(xué)生探究、猜測當k為其他整數(shù)時,BD與CE的關(guān)系。
4.引導(dǎo)學(xué)生探究,對于上述例題,當AD=AC,AE=AB,k=,時,通過對例題的引申,培養(yǎng)學(xué)生的發(fā)散思維,經(jīng)歷探究—猜測—證明的學(xué)習(xí)過程。
5.引導(dǎo)學(xué)生進一步推廣,把上面3、4中的k取一般的自然數(shù)后,原結(jié)論是否仍然成立?要求學(xué)生說明理由或給出證明。
6.對學(xué)生探究的結(jié)果予以匯總、點評,鼓勵學(xué)生在自己做題目的時候也要多思多想,并要求學(xué)生對猜測的結(jié)果給出證明。
7.提出新的問題,引導(dǎo)學(xué)生從“等角對等邊”這個命題的反面思考問題,即思考它的逆命題是否成立。適時地引導(dǎo)學(xué)生思考可以用哪些方法證明?培養(yǎng)學(xué)生的推理能力。
8.歸納學(xué)生提出的各種證法,清楚的分析證明的思路,培養(yǎng)學(xué)生演繹證明的初步的推理能力。
9.啟發(fā)學(xué)生思考:在一個三角形中,如果兩個角不相等,那么這兩個角所對的邊也不相等,這個結(jié)論是否成立?如果成立,能否證明。這實際上是“等邊對等角”的逆否命題,通過這樣的表述可以提高學(xué)生的思維能力。
10.總結(jié)這一證明方法,敘述并闡釋反證法的含義,讓學(xué)生了解。
11.小結(jié)這兩個課時的內(nèi)容。
作業(yè):
同步練習(xí)
板書設(shè)計:
1.積極思考,回憶以前所學(xué)知識,聯(lián)想新問題。
2.認真觀看例1圖形中線段的關(guān)系,積極思考,認真聽講。
3.對于課件的演示很感興趣,憑直觀感覺可以猜測,不管k為何值,BD=CE總成立?;谇懊胬}的啟發(fā),想要給出證明。一部分學(xué)生可以自己給出證明,一部分學(xué)生需要老師的幫助。
4.在已經(jīng)探究了角的大小的改變對于BD,CE的等長性沒有影響,有了一些成就感之后,又面臨新的任務(wù):BD=CE嗎?因此學(xué)生會滿懷熱情地進行這部分探究活動,而且有了前面的體驗,探究也會比較順利。
5.興致高漲,憑直覺猜測結(jié)論仍然成立。但有些學(xué)生給出全部證明可能會有困難。
6.認真聽講,在掌握結(jié)論的同時受到老師的鼓勵,有很高的熱情進行后續(xù)學(xué)習(xí)。
7.較少接觸這樣的命題,因此會感到新鮮,有用已知公理和定理對命題的真假性進行判斷的欲望。在老師指導(dǎo)下完成證明。
8,積極動腦思考,認真聽講,獲得對演繹證明的初步體會。
9.可以從直觀上得出結(jié)論,但是此處要求證明,體會到證明的必要性。遇到認知上的沖突,激起學(xué)習(xí)欲望。
10.懷有強烈的求知欲聽講,對反證法有了感性認識和一定的理解。
11.體會老師的講解,并根據(jù)小結(jié)記憶掌握知識。
(學(xué)生小結(jié):掌握證明的基本步驟和書寫格式。經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程。能夠用綜合法證明等腰三角形的兩條腰上的中線(高)、兩底角的平分線相等,并由特殊結(jié)論歸納出一般結(jié)論。等腰三角形的判定定理。了解反證法的推理方法。)
一、教材分析
1、教材的內(nèi)容、地位、作用及處理
這節(jié)課是義務(wù)教育課程標準試驗教科書人教版八年級第十四章第3節(jié)《等腰三角形》第一課時,等腰三角形是在學(xué)生學(xué)習(xí)了三角形的有關(guān)知識、掌握了全等三角形的判定及性質(zhì)與軸對稱的性質(zhì)的基礎(chǔ)上進行的。它不僅是對前面所學(xué)知識的綜合應(yīng)用,也是后面研究等邊三角形等內(nèi)容的預(yù)備知識,同時也是今后證明角相等、線段相等及兩直線垂直的重用依據(jù)。而通過探究等腰三角形的“三線合一”的性質(zhì),可以激發(fā)學(xué)生濃厚的學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生體會性質(zhì)定理的來龍去脈;了解、感知知識發(fā)生、發(fā)展的全過程;拓寬學(xué)生探索圖形變化的視野。掌握等腰三角形及其性質(zhì)在生活中的應(yīng)用,更有益于學(xué)生了解數(shù)學(xué)價值,體會數(shù)學(xué)來源于實踐,又反作用于實踐的認識問題的一般規(guī)律。對教材進行處理:增加2個例題,目的是直接運用性質(zhì)定理并認識等腰直角三角形。
2、重點:學(xué)生了解、感悟等腰三角形的性質(zhì)定理,歸納總結(jié)其證明。
3、難點:等腰三角形常用輔助線的作法。
二、目標分析
學(xué)情分析:等腰三角形是在學(xué)生學(xué)習(xí)了三角形的有關(guān)知識、掌握了全等三角形的判定及性質(zhì)與軸對稱的性質(zhì)的基礎(chǔ)上進行的,八年級學(xué)生的思維活躍、愿意表達自己的見解,有一定的互動互助基礎(chǔ),但在應(yīng)用數(shù)學(xué)知識解決實際問題的方面還缺乏經(jīng)驗。其次學(xué)生程度參差不齊,兩極分化已經(jīng)形成,個體差異比較明顯。再次學(xué)生的思維逐漸由形象思維向抽象思維轉(zhuǎn)變,但形象思維仍占主導(dǎo)地位,數(shù)形結(jié)合是學(xué)生掌握知識的較好方法。新課標指出:“三維目標”是一個密切聯(lián)系的有機整體,應(yīng)該使獲得知識與技能的過程同時成為學(xué)會學(xué)習(xí)和形成正確價值觀的過程,所以確定本課的教學(xué)目標為三個方面:
1、知識技能性目標:使學(xué)生通過試驗猜想、主動探究的學(xué)習(xí)活動,發(fā)現(xiàn)并認同等腰三角形的性質(zhì)定理及推論,探索歸納出它們的證明方法,并能用其解決實際問題。
2、過程方法性目標:讓學(xué)生經(jīng)歷“實驗-探究-解決-收獲”的學(xué)習(xí)過程,體會發(fā)現(xiàn)問題、探究問題的思想,從中感悟證明結(jié)論的方法和樂趣,初步了解作輔助線的技巧,培養(yǎng)“轉(zhuǎn)化”及“分類討論”的數(shù)學(xué)思想方法。
3、情感價值觀目標:在親切、和諧、民主、活躍的探究氛圍中,引導(dǎo)學(xué)生對圖形觀察、發(fā)現(xiàn),激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使其個性得以充分張揚。幫助其養(yǎng)成良好的學(xué)習(xí)習(xí)慣和勤于思考、勇于探索的的思想品質(zhì),建立學(xué)習(xí)的自信心。
三、教法分析:
建構(gòu)主義認為,知識是在原有知識的基礎(chǔ)上,在人與環(huán)境的相互作用過程中,通過同化和順應(yīng),使自身的認知結(jié)構(gòu)得以轉(zhuǎn)換和發(fā)展?;诒竟?jié)課內(nèi)容的特點和八年級學(xué)生的年齡特征,根據(jù)“以人為本,以學(xué)定教”的教育理念,從學(xué)生已有的認知基礎(chǔ)出發(fā),以學(xué)生自主探索、合作交流為主線,讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程,加深對所學(xué)知識的理解,從而突破重難點。教師著眼于引導(dǎo),學(xué)生著眼于探索,同時,考慮到學(xué)生的個體差異,在教學(xué)的各個環(huán)節(jié)進行分層施教,實現(xiàn)“有差異”的發(fā)展。注重調(diào)動學(xué)生的潛能,充分讓學(xué)生參與每一個環(huán)節(jié)的學(xué)習(xí)活動,爭取每個學(xué)生都有自己的親身體驗和理解,都有不同的收獲。利用多媒體教學(xué)手段,直觀呈觀等腰三角形的和諧、對稱的美,通過學(xué)生折紙活動探究性質(zhì)的過程,激發(fā)學(xué)生的興趣,增大教學(xué)容量,提高課堂效率,最優(yōu)化的達到教學(xué)目的。
四、學(xué)法分析:
課程改革的具體目標之一是“改變課程實施過于強調(diào)接受學(xué)習(xí)、死記硬背、機械訓(xùn)練的現(xiàn)狀,倡導(dǎo)學(xué)生主動參與、樂于探究、勤于動手,培養(yǎng)學(xué)生收集和處理信息的能力、獲取新知識的能力、分析和解決問題的能力以及交流與合作的能力”。數(shù)學(xué)作為基礎(chǔ)教育的核心課程之一,轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式,不僅有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),而且有利于促進學(xué)生整體學(xué)習(xí)方式的轉(zhuǎn)變。我以構(gòu)建主義理論為指導(dǎo),輔以多媒體手段,在教師的組織引導(dǎo)下,采用自主實驗探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。在課堂結(jié)構(gòu)上,我根據(jù)學(xué)生的認知水平,設(shè)計了
①創(chuàng)設(shè)情景,激發(fā)興趣;
②實驗操作與歸納驗證--形成和深化概念;
③技能演練與拓展--鞏固新知;
④感悟收獲---提高認識;
⑤布置作業(yè)五部分。設(shè)計從四個活動展開,以分散難點、突破重點,變“學(xué)會”為“會學(xué)”,充分保障學(xué)生的主體地位。
五、評價分析:
整節(jié)課是一個動手作圖、動眼觀察、動腦猜想、實踐驗證、鞏固應(yīng)用的動態(tài)生成過程,注重學(xué)生能力的培養(yǎng)和習(xí)慣的養(yǎng)成。由于學(xué)生的層次不一,教師要全程關(guān)注每一學(xué)生的學(xué)習(xí)狀態(tài),進行分層施教。對可能出現(xiàn)的突發(fā)事件,要因勢利導(dǎo)、隨機應(yīng)變,適時調(diào)整教學(xué)環(huán)節(jié)。同時將“教學(xué)反應(yīng)”型評價和“讓學(xué)生談收獲的教學(xué)反饋”評價相結(jié)合,促進學(xué)生的自主評價,努力推行成功教育、愉快教育的理念,把握評價的時機與尺度,實現(xiàn)評價主體和形式的多樣化,從而激發(fā)學(xué)生的學(xué)習(xí)興趣,激活課堂氣氛,使課堂教學(xué)達到最佳狀態(tài)。
六、教學(xué)過程分析
(一)創(chuàng)設(shè)情景,激發(fā)興趣
1、利用多媒體課件展示影視材料:埃菲爾鐵塔、長江大橋、水晶塔、金字塔、歐式建筑等。
(設(shè)計意圖:讓學(xué)生感受等腰三角形在實際生活中的應(yīng)用,從生活中去發(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認識并掌握數(shù)學(xué),同時也激發(fā)學(xué)生的興趣,吸引學(xué)生的注意力,培養(yǎng)學(xué)生從實際問題背景中抽象出數(shù)學(xué)問題的能力。即:學(xué)會數(shù)學(xué)地思考。)
(二)等腰三角形性質(zhì)定理的探索,發(fā)現(xiàn)過程
活動1、由學(xué)生動手剪紙,完成課本140頁的探究,形成等腰三角形的有關(guān)概念。
活動2、除了剪紙方法,你還能用其他方法做一個等腰三角形嗎?說一說你的做法。并指明它的腰、底邊、頂角、底角。
(設(shè)計意圖:為學(xué)生提供參與數(shù)學(xué)活動的時間和空間,調(diào)動學(xué)生的主觀能動性,培養(yǎng)學(xué)生的參與意識、實踐能力,通過活動使學(xué)生增強對圖形的直觀體驗,從中體會、感知等腰三角形的本質(zhì)特性,發(fā)展空間觀念,為下一步研究等腰三角形的性質(zhì)作好準備。)
活動3、實驗猜想:請同學(xué)們利用手中的圖形折一折、量一量,你能發(fā)現(xiàn)什么結(jié)論?比一比,議一議,看誰發(fā)現(xiàn)的結(jié)論多。完成課本141頁的思考。
(設(shè)計意圖:引導(dǎo)學(xué)生議一議,通過小組間合作交流學(xué)習(xí),充分調(diào)動學(xué)生觀察、思考、歸納的積極性從而得出等腰三角形的性質(zhì)雛形。有利于本節(jié)課重點的突出,難點的突破)
活動4、建立模型、驗證結(jié)論:讓學(xué)生對上述猜想進行數(shù)學(xué)說理并引導(dǎo)學(xué)生歸納出輔助線的所有作法。
(設(shè)計意圖:這樣做有利于學(xué)生參與探索,感受學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。進一步突破重難點。教師演示性質(zhì)1的證明,學(xué)生完成性質(zhì)2的證明。)
(三)技能演練與拓展:
1、演----運用新知
(1)等腰三角形的頂角是36°,則它的底角是___度。
(2)在△ABC中,AB=AC,∠BAC=90°,AD是BC邊上的高,∠BAD=____,BD=_______=__________.
(3)如圖,在△ABC中,AB=AC,點D在AC上,且BD=BD=AD,
求△ABC各角的度數(shù)。
(設(shè)計意圖:學(xué)生討論問題,教師參與討論并適時地啟發(fā),重點關(guān)注:①學(xué)生能否正確應(yīng)用等腰三角形的性質(zhì),②學(xué)生應(yīng)用所學(xué)知識的應(yīng)用意識。目的是培養(yǎng)學(xué)生正確應(yīng)用知識的能力,增強應(yīng)用意識和參與意識,鞏固所學(xué)知識。)
2、練與拓----鞏固新知
(1)練習(xí):
①P1431、2、3(1和2題集體要求,3題中上層次學(xué)生完成,并安排學(xué)生板演)
②P1508(屏幕顯示題目,要求學(xué)生用精煉的語言進行表述)
(2)拓廣延伸:完成P142的討論并總結(jié)規(guī)律,并給出其中一或二個的證明。
(設(shè)計意圖:通過習(xí)題的解答,讓不同的人得到不同的發(fā)展,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,找到自信。且練習(xí)的設(shè)計充分考慮到了學(xué)生的個體差異,練習(xí)源于例題,以本為本。例題由教師板書,體現(xiàn)示范功能。練習(xí)由學(xué)生板演,關(guān)注學(xué)生的數(shù)學(xué)表達,提供反饋校正的素材。拓廣延伸通過討論交流,實現(xiàn)生生師生互助,豐富情感體驗,活躍課堂氣氛。)
(四)感悟收獲
通過本節(jié)課的探索研究,你收獲到了什么?有何感受?
(設(shè)計意圖:讓學(xué)生談收獲,回授到的不僅有知識與技能的達成情況,還有過程的體驗、方法的獲得以及數(shù)學(xué)思想方法和情感價值觀的形成情況。將“教學(xué)反應(yīng)”型評價和“讓學(xué)生談收獲的教學(xué)反饋”評價相結(jié)合,促進學(xué)生的自主評價,努力推行成功教育、愉快教育的理念,把握評價的時機與尺度,實現(xiàn)評價主體和形式的多樣化,從而激發(fā)學(xué)生的學(xué)習(xí)興趣,激活課堂氣氛,使課堂教學(xué)達到最佳狀態(tài)。教師根據(jù)情況再進行小結(jié)。)
(五)布置作業(yè):
1、課本P149-150習(xí)題14.31(必作),3(必作),7(選作)
2、實驗感悟(選作):畫線段BC,分別以B、C為頂點作兩個相等的角,兩角終邊的交點為A,再作△ABC的中線AD,然后沿AD翻折,試試看你有新的發(fā)現(xiàn)嗎?
(設(shè)計意圖:學(xué)以致用、鞏固提高,作業(yè)分必做題和選做題,體現(xiàn)分層思想。通過作業(yè),內(nèi)化知識,檢驗學(xué)生掌握知識的情況,發(fā)現(xiàn)和彌補教與學(xué)中的遺漏與不足。同時,選做題具有前瞻性,可引導(dǎo)學(xué)生自學(xué)探究,為后一節(jié)課的教學(xué)做好準備。)
七、設(shè)計說明
1、本設(shè)計始終體現(xiàn)以學(xué)生為中心的教育理念,通過數(shù)學(xué)實驗激發(fā)了學(xué)生探究的興趣,提高了他們實驗、分析、探究的能力,讓學(xué)生體會到實驗觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想,學(xué)生的創(chuàng)造力得到充分發(fā)揮,從而得出新的結(jié)論和新的猜想,因為教學(xué)過程也就是學(xué)生的認知過程,只有學(xué)生積極參與才能達到教學(xué)目的,同時遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律,讓學(xué)生在一定情景中去經(jīng)歷、感悟知識,才是學(xué)生最有價值的收獲,體現(xiàn)了學(xué)生從維持性學(xué)習(xí)走向研究性學(xué)習(xí),從而走向自主創(chuàng)新性學(xué)習(xí)的轉(zhuǎn)變和進步。
2板書設(shè)計:
3時間安排:debasrideb.com
“復(fù)習(xí)引入”約3分鐘,“探索、發(fā)現(xiàn)、驗證過程”約17分鐘?!凹寄苎菥毰c拓展”約20分鐘。“感悟收獲”約4分鐘,“布置作業(yè)”約1分鐘。
(注:45分鐘一課時)
目標:
知識目標: 等腰三角形的相關(guān)概念,兩個定理的理解及應(yīng)用。
技能目標: 理解對稱思想的使用,學(xué)會運用對稱思想觀察思考,運用等腰三角形的思想整體觀察對象,總結(jié)一些有益的結(jié)論。
情感目標: 體會數(shù)學(xué)的對稱美,體驗團隊精神,培養(yǎng)合作精神。
2、“等邊對等角”的理解和使用。
3、“三線合一”的理解和使用。
難點:
1、等腰三角形三線合一的具體應(yīng)用。
2、等腰三角形圖形組合的觀察,總結(jié)和分析。
1、使用導(dǎo)學(xué)法、討論法。
2、運用合作學(xué)習(xí)的'方式,分組學(xué)習(xí)和討論。
3、運用多媒體輔助教學(xué)。
4、調(diào)動學(xué)生動手操作,幫助理解。
準備工作:
1、多媒體課件片斷,輔助難點突破。
2、學(xué)生課前分小組預(yù)習(xí),上課時按小組落座。
3、學(xué)生自帶剪刀,圓規(guī),直尺等工具。
4、每人得到一張印有“長度為a的線段”的紙片。
教學(xué)設(shè)計策略:依據(jù)教學(xué)目標和學(xué)生的特點,依據(jù)教學(xué)時間和效率的要求,在此課教學(xué)方法和教學(xué)模式的設(shè)計中我主要體現(xiàn)了以下的設(shè)計思想和策略:
1、回歸學(xué)生主體,一切圍繞著學(xué)生的學(xué)習(xí)活動和當堂的反饋程度安排教學(xué)過程。
2、原則性和靈活性相結(jié)合,既要完成教學(xué)計劃,在教學(xué)過程中又可以根據(jù)現(xiàn)實的情況,安排問題的難度,體現(xiàn)一些靈活性。
3、教學(xué)的形式上注重個體化,充分給予學(xué)生討論和發(fā)表意見的機會,注重學(xué)習(xí)的參與性,努力避免以教師活動為主體的教學(xué)過程。
相信《等腰三角形課件實用十四篇》一文能讓您有很多收獲!“幼兒教師教育網(wǎng)”是您了解幼師資料,工作計劃的必備網(wǎng)站,請您收藏yjs21.com。同時,編輯還為您精選準備了等腰三角課件專題,希望您能喜歡!
相關(guān)推薦
以下是由欄目小編為您帶來的等腰三角形教案。教案課件是老師上課做的提前準備,這就需要我們老師自己抽時間去完成。寫好教案課件,可以避免重中之重被遺漏。還希望您能從本網(wǎng)頁有所收獲!...
我們常說,機會是留給有準備的人。在幼兒教育工作中,我們都有會準備一寫需要用到資料。資料意義廣泛,可以指一些參考素材。有了資料的幫助會讓我們在工作中更加如魚得水!只不過,你是否知道有哪些幼師資料種類呢?小編經(jīng)過整理,為你編輯了三角形的內(nèi)角和課件,歡迎你收藏本站,并關(guān)注網(wǎng)站更新!教學(xué)目標:1、通過“算一...
為了讓學(xué)生更好地掌握上課所學(xué)知識,老師需要提前準備教案,不能草率了事。教案是評價和總結(jié)教學(xué)過程的重要材料。筆者費心打造了這篇“解直角三角形課件”,希望能受到大家的青睞,供參考和使用,希望大家能夠收藏并分享!...
最新更新