等差數(shù)列教案。
古人云,工欲善其事,必先利其器。作為幼兒園老師的我們的課堂上能更好的發(fā)揮教學效果,教案的作用就是為了緩解學生的壓力,提升效率,有了教案,在上課時遇到各種教學問題都能夠快速解決。您知道幼兒園教案應該要怎么下筆嗎?于是,小編為你收集整理了等差數(shù)列教案十四篇。請閱讀后分享你的朋友!
通過練習2和3 引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎,為學習新知識創(chuàng)設問題情境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。
1、由引入自然的給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調:
②公差d一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(shù)(強調“同一個常數(shù)” );
在理解概念的基礎上,由學生將等差數(shù)列的文字語言轉化為數(shù)學語言,歸納出數(shù)學表達式:
同時為了配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。
2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01
4。 1,2,3,2,3,4,……;×
5。 1,0,1,0,1,……×
在歸納等差數(shù)列通項公式中,我采用討論式的教學方法。給出等差數(shù)列的首項 ,公差d,由學生研究分組討論a4 的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。
若一等差數(shù)列{an }的首項是a1,公差是d,
則據(jù)其定義可得:
進而歸納出等差數(shù)列的通項公式:
此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向學生介紹另外一種求數(shù)列通項公式的辦法――――――迭加法:
將這(n―1)個等式左右兩邊分別相加,就可以得到 anC a1= (n―1) d即 an= a1+(n―1) d (1)
當n=1時,(1)也成立,
因此它就是等差數(shù)列{an}的通項公式。
在迭加法的證明過程中,我采用啟發(fā)式教學方法。
利用等差數(shù)列概念啟發(fā)學生寫出n―1個等式。
對照已歸納出的通項公式啟發(fā)學生想出將n―1個等式相加。證出通項公式。
在這里通過該知識點引入迭加法這一數(shù)學思想,逐步達到“注重方法,凸現(xiàn)思想” 的教學要求
接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n―1)×2 , 即an=2n―1 以此來鞏固等差數(shù)列通項公式運用
同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質顯現(xiàn)得更加清楚。
這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。
例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項
(2)―401是不是等差數(shù)列―5,―9,―13,…的項?如果是,是第幾項?
在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關鍵是求出數(shù)列的通項公式an
例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。
建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5。8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?
這道題我采用啟發(fā)式和討論式相結合的教學方法。啟發(fā)學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數(shù)列,引導學生將該實際問題轉化為數(shù)學模型――――――等差數(shù)列:(學生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用展示實際樓梯圖以化解難點)
設置此題的目的:
1。加強同學們對應用題的綜合分析能力,
2。通過數(shù)學實際問題引出等差數(shù)列問題,激發(fā)了學生的興趣;
3。再者通過數(shù)學實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學模型,最后還原說明實際問題的“數(shù)學建模”的數(shù)學思想方法
1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。
2、書上例3)梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。
3、若數(shù)例{an} 是等差數(shù)列,若 bn = an ,(為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列
此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。
1。等差數(shù)列的概念及數(shù)學表達式.
選做題:已知等差數(shù)列{an}的首項a1= ―24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)
在板書中突出本節(jié)重點,將強調的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。
數(shù)學是思維的體操,是培養(yǎng)學生分析問題、解決問題的能力及創(chuàng)造能力的載體,新課程倡導:強調過程,強調學生探索新知識的經(jīng)歷和獲得新知的體驗,不能在讓教學脫離學生的內心感受,必須讓學生追求過程的體驗?;谝陨险J識,在設計本節(jié)課時,教師所考慮的不是簡單告訴學生等差數(shù)列的定義和通項公式,而是創(chuàng)造一些數(shù)學情境,讓學生自己去發(fā)現(xiàn)、證明。在這個過程中,學生在課堂上的主體地位得到充分發(fā)揮,極大的激發(fā)了學生的學習興趣,也提高了他們提出問題解決問題的能力,培養(yǎng)了他們的創(chuàng)造力。這正是新課程所倡導的數(shù)學理念。
本節(jié)課借助多媒體輔助手段,創(chuàng)設問題的情境,讓探究式教學走進課堂,保障學生的主體地位,喚醒學生的主體意識,發(fā)展學生的主體能力,塑造學生的主體人格,讓學生在參與中學會學習、學會合作、學會創(chuàng)新。
高中數(shù)學必修五第二章第二節(jié),等差數(shù)列,兩課時內容,本節(jié)是第一課時。研究等差數(shù)列的定義、通項公式的推導,借助生活中豐富的典型實例,讓學生通過分析、推理、歸納等活動過程,從中了解和體驗等差數(shù)列的定義和通項公式。通過本節(jié)課的學習要求理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式,并且了解等差數(shù)列與一次函數(shù)的關系。
本節(jié)是第二章的基礎,為以后學習等差數(shù)列的求和、等比數(shù)列奠定基礎,是本章的重點內容。在高考中也是重點考察內容之一,并且在實際生活中有著廣泛的應用,它起著承前啟后的作用。同時也是培養(yǎng)學生數(shù)學能力的良好題材。等差數(shù)列是學生探究特殊數(shù)列的開始,它對后續(xù)內容的學習,無論在知識上,還是在方法上都具有積極的意義。
學生已經(jīng)具有一定的理性分析能力和概括能力,且對數(shù)列的知識有了初步的接觸和認識,對數(shù)學公式的運用已具備一定的技能,已經(jīng)熟悉由觀察到抽象的數(shù)學活動過程,對函數(shù)、方程思想體會逐漸深刻。他們的思維正從屬于經(jīng)驗性的邏輯思維向抽象思維發(fā)展,但仍需要依賴一定的具體形象的經(jīng)驗材料來理解抽象的邏輯關系。同時思維的嚴密性還有待加強。
1.知識目標:理解等差數(shù)列概念,掌握等差數(shù)列的通項公式,了解等差數(shù)列與一次函數(shù)的關系。
2.能力目標:培養(yǎng)學生觀察、歸納能力,應用數(shù)學公式的能力及滲透函數(shù)、方程的思想。
3.情感目標:體驗從特殊到一般,又到特殊的認知規(guī)律,提高數(shù)學猜想、歸納的能力。
教學難點:對等差數(shù)列概念的理解及學會通項公式的推導及應用。
數(shù)學教學是數(shù)學活動的教學,是師生之間、學生之間交往互動共同發(fā)展的過程,結合學生的實際情況,及本節(jié)內容的特點,我采用的是“問題教學法”,其主導思想是以探究式教學思想為主導,由教師提出一系列精心設計的問題,在教師的啟發(fā)指導下,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結論,從而使學生即獲得知識又發(fā)展智能的目的。
教學手段:多媒體計算機和傳統(tǒng)黑板相結合。通過計算機模擬演示,使學生獲得感性知識的同時,為掌握理性知識創(chuàng)造條件,這樣做,可以使學生有興趣地學習,注意力也容易集中,符合教學論中的直觀性原則和可接受性原則。而保留使用黑板則能讓學生更好的經(jīng)歷整個教學過程。
設計意圖:希望學生能通過日常生活中的實際問題的分析對比,建立等差數(shù)列模型,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的過程。
師—把上面的數(shù)列各項依次記為 ,填空:
師—上面這個規(guī)律還有其他形式嗎?
師—你能用普通語言概括上面的規(guī)律嗎?
學生—自由發(fā)言,選擇最恰當?shù)恼Z言。
上面的數(shù)列已找出這一特殊規(guī)律,下面再觀察一些數(shù)列并也找出它們的規(guī)律。
(1)20北京奧運會,女子舉重共設置7個級別,其中較輕的4個級別體重組成數(shù)列(單位:kg):
(2)水庫的管理員為了保證優(yōu)質魚類有良好的生活環(huán)境,定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m)
(3)我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本金計算下一期的利息。按照單利計算本利和的公式是:
時間 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%, 那么按照單利,5年內各年末本利和分別是:如下表(假設5年既不加存款也不取款,且不扣利息稅)
學生—(1) , ,
(2) , ,
(3) , ,
師 —滿足這種特征的數(shù)列很多,我們有必要為這樣的數(shù)列取一個名字?
師—給出文字敘述的定義(學生敘述,板書定義):
一般的,如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列,d為公差,a1為數(shù)列的首項。
對定義進行分析,強調: = 1 GB3 ① 同一個常數(shù); = 2 GB3 ② 從第二項起。
師—這樣的數(shù)列在生活中的例子,誰能再舉幾個?
52,50,48,46,44,42,40,38.
21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25
1,2,4,6,8,10,12,……
0,1,2,3,4,5,6,……
3,3,3,3,3,3,3……
2,4,7,11,16,……
-8,-6,-4,0,2,4,……
3,0,-3,-6,-9,……
設計意圖:概括等差中項的概念??偨Y等差中項公式,用于發(fā)現(xiàn)等差數(shù)列的性質。
師生活動:
師—想一想,一個等差數(shù)列最少有幾項?它們之間有什么關系?
學生思考后回答,至少三項,然后老師引導學生概括等差中項的概念。
設三個數(shù) 成等差數(shù)列,則A叫a與b的等差中項。同時有A-a=b-A,
(2)等差數(shù)列中的任意連續(xù)三項都構成等差數(shù)列 ,反之亦成立。
設計意圖:通過具體數(shù)列的通項公式,總結一般等差數(shù)列的通項公式,體會特殊到一般的數(shù)學思想方法。
師生活動:
師—對于一個數(shù)列,我們最關心的是每一項,而這就要求我們能知道它的通項公式。下面一起來研究等差數(shù)列的通項公式。
先寫出上面引例中等差數(shù)列的通項公式。再推導一般等差數(shù)列的通項公式。
師—若一個數(shù)列 是等差數(shù)列,它的公差是d,那么數(shù)列 的通項公式是什么?
啟發(fā)學生:(歸納、猜想)可用首項與公差表示數(shù)列中任意一項。
學生—第二項,所以n≥2。
師—n=1時呢?
師—很好!
我說課的課題是等差數(shù)列的前n項和,本節(jié)內容選自江蘇教育出版社中職數(shù)學第二冊第11章第2節(jié),下面我將從說教材、說教法學法、說教學過程、說板書設計以及說教學反思幾個方面對本節(jié)課加以說明。
中職數(shù)學是中等職業(yè)學校各類專業(yè)學生必修的主要文化基礎課,學好這門課程對提高學生數(shù)學素養(yǎng)具有十分重要的意義。數(shù)列這一章是中職數(shù)學的重要內容之一。它不僅是函數(shù)知識的延伸,而且還有著非常廣泛的實際應用;同時數(shù)列還是培養(yǎng)學生數(shù)學思維能力的良好題材。
《等差數(shù)列的前n項和》是本章的第二節(jié),它為后繼學習提供了知識基礎,對提高學生分析、猜想、概括、歸納的能力有著重要的作用。
《等差數(shù)列》作為《數(shù)列》這一章中兩個最重要的數(shù)列之一,具有承上啟下的作用,它的研究和解決集中體現(xiàn)了研究《數(shù)列》問題的思想和方法。學習《等差數(shù)列的前n項和》對提高學生分析、猜想、概括、歸納的能力有著重要的作用。
2、教學目標根據(jù)教學大綱的要求和教學內容的結構特征,并結合學生學習的實際情況,我將本節(jié)課的教學目標確定為以下三個方面
能力目標:1、培養(yǎng)學生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法。
2、讓學生在問題中感受學習的樂趣;
3、教學重點和難點。根據(jù)本節(jié)課的內容以及學生已掌握的知識情況我將
教法教學有法但教無定法,教學方法要與學生學習的實際情況相結合。
中職學生的生源質量逐年下降,大部分中職生基礎薄弱、理解接受能力較差,大多數(shù)學生不愛學習,不會學習。學生認為數(shù)學難,枯燥理解不了。對數(shù)學學習提不起興趣,因此在教學中我注重激發(fā)學生學習的興趣。本節(jié)課通過具體的實例引入,采用了問題、類比、發(fā)現(xiàn)、歸納的探究式教學方法。引導學生積極主動的去學習。在課堂教學中強調以學生為主體,注重精講多練。同時也注重學生非智力因素的培養(yǎng),增強學生的自信心和成就感。為學習營造寬松和諧的氛圍。另外在教學中使用多媒體教學手段等,提高教學質量和教學效果。
學法我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。倡導學生主動參與、樂于探究,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題和解決問題的能力。根據(jù)學生的認知水平,我設計了①創(chuàng)設情境—引入問題②分析歸納—解決問題③例題研究—運用新知④分組訓練—鞏固新知⑤總結歸納—提高認識⑥課后作業(yè)-自主探究六個層次的學法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學目標。
接下來,我再具體談一談這堂課的教學過程。
我經(jīng)常在想:長期以來,我們的學生為什么對數(shù)學不感興趣,甚至害怕數(shù)學,其中一個重要因素就是數(shù)學離學生的生活實際太遠了。事實上,數(shù)學學習應該與學生的生活融合起來,從學生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學、探究數(shù)學、認識并掌握數(shù)學。
由生活中的實例一招聘信息引入:A公司月薪20xx元;B公司第一個月800元,以后逐月遞加200元。你愿意到哪家公司上班?為什么?在A、B公司一年各共領多少錢?五年呢?以此來激發(fā)學生的學習興趣。再給學生講數(shù)學家高斯的故事
1+2+3+…+100=
同學們,如果你是小高斯,你會怎么向老師解釋算法呢?
讓學生在在教師的啟發(fā)引導下,由被動地聽講變?yōu)橹鲃訁⑴c,敢于發(fā)表自己獨特的見解,并學會傾聽、尊重他人的意見。教師引導學生概括總結出本課新的知識點。
類似m+n=s+t am+an=as+at m,n,s,t∈N+
——讓學生利用剛學的知識解決當前的問題,讓學生明白學以致用。
例1、(1)求正奇數(shù)前100項之和;
(2)求第101個正奇數(shù)到第150個正奇數(shù)之和;
(3)等差數(shù)列的通項公式為an=100-3n,求其前65項之和;
例2、某長跑運動員7天每天的訓練量(單位:m)分別是7500,8000,8500,9000,9500,10000,10500,他在7天內共跑了多少米?
例3、設等差數(shù)列{an}的公差d=,,前n項之和Sn=。求a1及n
課堂上讓學生用兩種公式解題,有利于提高思維的靈活性,通過板演調動學生的積極性,也掌握本節(jié)課的重點和難點。
教學設想,例題過后,我特地設計了一組檢測題,
1、等差數(shù)列求和公式Sn=
2、等差數(shù)列{an}中,(1)a1=2,d=-1則Sn=
3、2c+4c+6c+…+2nc=
4、一堆圓木,每層總比上一層多一根,頂層4根,最底層21根,這堆木料有多少根?
5、一只掛鐘,遇整點就敲響,鐘響的次數(shù)是該點的時間數(shù),從1點到12點共響幾次?
通過游戲比賽的形式,活躍課堂氣氛,提高學生的學習興趣。來鞏固新知識。
讓學生通過所學內容的小結,對知識的發(fā)生發(fā)展有一個清晰的線索,把課堂所學知識構建起新的知識體系。同時養(yǎng)成良好的學習習慣。
學生經(jīng)過以上五個環(huán)節(jié)的學習,已經(jīng)初步掌握了等差數(shù)列的前n項的求和,并解決了一些實際問題。
根據(jù)學生在課堂上知識掌握的情況有針對性布置課后作業(yè)。提高學生應用知識的能力。
我將這節(jié)課的板書設計為三列,一列為本節(jié)課的基本知識點,一列為例題,一列為講解。條理清晰,一目了然。
我認為板書設計在課堂教學中也很重要,好的板書就是一份微型教案,向學生展現(xiàn)了所學知識的框架,突出重點難點,清晰直觀地將授課內容傳遞給學生,便于學生理解掌握。
根據(jù)課堂教學情況,課后及時總結,不斷改進,精益求精,努力提高課堂教學效果。
結束:以上是我說課的內容,不當之處希望各位評委老師提出寶貴意見。
數(shù)列是刻畫離散現(xiàn)象的函數(shù),是一種重要的屬性模型。人們往往通過離散現(xiàn)象認識連續(xù)現(xiàn)象,因此就有必要研究數(shù)列。
在推導等差數(shù)列前n項和公式的過程中,采用了:
1、從特殊到一般的研究方法;
2、倒敘相加求和。不僅得出來等差數(shù)列前n項和公式,而且對以后推導等比數(shù)列前n項和公式有一定的啟發(fā),也是一種常用的數(shù)學思想方法。等差數(shù)列的前n項和是學習極限、微積分的基礎,與數(shù)學課程的其他內容(函數(shù)、三角、不等式等)有著密切的聯(lián)系。
掌握等差數(shù)列的前n項和公式,能較熟練應用等差數(shù)列的前n項和公式求和。
經(jīng)歷公式的推導過程,體會數(shù)形結合的數(shù)學思想,體驗從特殊到一般的研究方法,學會觀察、歸納、反思。
獲得發(fā)現(xiàn)的成就感,逐步養(yǎng)成科學嚴謹?shù)膶W習態(tài)度,提高代數(shù)推理的.能力。
三、教法學法分析
教學過程分為問題呈現(xiàn)階段、探索與發(fā)現(xiàn)階段、應用知識階段。
探索與發(fā)現(xiàn)公式推導的思路是教學的重點。如果直接介紹“倒敘相加”求和,無疑就像波利亞所說的“帽子里跳出來的兔子”。所以在教學中采用以問題驅動、層層鋪墊,從特殊到一般啟發(fā)學生獲得公式的推導方法。
應用公式也是教學的重點。為了讓學生較熟練掌握公式,可采用設計變式題的教學手段,通過“選擇公式”,“變用公式”,“知三求二”三個層次來促進學生新的認知結構的形成。
建構主義學習理論認為,學習是學生積極主動地建構知識的過程,學習應該與學生熟悉的背景相聯(lián)系。在教學中,讓學生在問題情境中,經(jīng)歷知識的形成和發(fā)展,通過觀察、操作、歸納、探索、交流、反思參與學習,認識和理解數(shù)學知識,學會學習,發(fā)展能力。
泰姬陵坐落于印度古都阿格,是世界七大奇跡之一。傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成共有100層。你知道這個圖案一共花了多少寶石嗎?
設計意圖:
(1)、源于歷史,富有人文氣息。
(1)、學生敘述高斯首尾配對的方法(學生對高斯的算法是熟悉的,知道采用首尾配對的方法來求和,但是他們對這種方法的認識可能處于模仿、記憶的階段。)
(2)、為了促進學生對這種算法的進一步理解,設計了下面的問題。
問題1:圖案中,第1層到第21層共有多少顆寶石?(這是奇數(shù)個項和的問題,不能簡單模仿偶數(shù)個項求和的方法,需要把中間項11看成是首、尾兩項1和21的等差中項。
通過前后比較得出認識:高斯“首尾配對”的算法還得分奇數(shù)、偶數(shù)個項的情況求和。
(3)、進而提出有無簡單的方法。
借助幾何圖形的直觀性,引導學生使用熟悉的幾何方法:把“全等三角形”倒置,與原圖補成平行四邊形。
幾何直觀能啟迪思路,幫助理解,因此,借助幾何直觀學習和理解數(shù)學,是數(shù)學學習中的重要方面,只有做到了直觀上的理解,才是真正的理解。因此在教學中,要鼓勵學生借助幾何直觀進行思考,揭示研究對象的性質和關系,從而滲透了數(shù)形結合的數(shù)學思想。
Sn=(從求確定的前n個正整數(shù)之和到求一般項數(shù)的前n個正整數(shù)之和,旨在讓學生體驗“倒敘相加求和”這一算法的合理性,從心理上完成對“首尾配對求和”算法的改進)
由于前面的鋪墊,學生容易得出如下過程:
∵Sn=an+an—1+an—2+…a1,
等差數(shù)列的性質(如果m+n=p+q,那么am+an=ap+aq。)
設計意圖:
一言以蔽之,數(shù)學教學應努力做到:以簡馭繁,平實近人,退樸歸真,循循善誘,引人入勝。
公式1Sn=;
某長跑運動員7天里每天的訓練量如下7500m,8000m,8500m,9000m,9500m,10000m,10500m。這位長跑運動員7天共跑了多少米?(本例提供了許多數(shù)據(jù)信息,學生可以從首項、尾項、項數(shù)出發(fā),使用公式1,也可以從首項、公差、項數(shù)出發(fā),使用公式2求和。達到學生熟悉公式的要素與結構的教學目的。
通過兩種方法的比較,引導學生應該根據(jù)信息選擇適當?shù)墓?,以便于計算。?/p>
等差數(shù)列—10,—6,—2,2,…的前多少項和為54?(本例已知首項,前n項和、并且可以求出公差,利用公式2求項數(shù)。
事實上,在兩個求和公式中包含四個元素,從方程的角度,知三必能求余一。)
變式練習:在等差數(shù)列{an}中,a1=20,an=54,Sn=999,求n。
在等差數(shù)列{an}中,已知d=20,n=37,Sn=629,求a1及an。(本例是使用等差數(shù)列的求和公式和通項公式求未知元。
事實上,在求和公式、通項公式中共有首項、公差、項數(shù)、尾項、前n項和五個元素,如果已知其中三個,連列方程組,就可以求出其余兩個。)
4、當堂訓練,鞏固深化。
通過學生的主體性參與,使學生深刻體會到本節(jié)課的主要內容和思想方法,從而實現(xiàn)對知識的再次深化。
采用課后習題1,2,3。
5、小結歸納,回顧反思。
①、回顧從特殊到一般的研究方法;
②、體會等差數(shù)列的基本元素的表示方法,倒敘相加的算法,以及數(shù)形結合的數(shù)學思想。
①、通過本節(jié)課的學習,你學到了哪些知識?
②、通過本節(jié)課的學習,你最大的體驗是什么?
③、通過本節(jié)課的學習,你掌握了哪些技能?
作業(yè)分為必做題和選做題,必做題是對本節(jié)課學生知識水平的反饋,選做題是對本節(jié)課內容的延伸與連貫,強調學以致用。通過作業(yè)設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生的自主發(fā)展、合作探究的學習氛圍的形成。
我設計了以下作業(yè):
習題3.3第2題(3,4)。
(1)、已知a2+a5+a12+a15=36,求是S16。
(2)、已知a6=20,求s11。
板書要基本體現(xiàn)課堂的內容和方法,體現(xiàn)課堂進程,能簡明扼要反映知識結構及其相互關系:能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。
學生學習的結果評價固然重要,但是更重要的是學生學習的過程評價。我采用了及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發(fā)展情況,在質疑探究的過程中,評價學生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發(fā)展,通過鞏固練習考查學生對本節(jié)是否有一個完整的集訓,并進行及時的調整和補充。
各位評委老師:
大家好!
我說課的課題是等差數(shù)列的前n項和,本節(jié)內容選自江蘇教育出版社中職數(shù)學第二冊第11章第2節(jié),下面我將從說教材、說教法學法、說教學過程、說板書設計以及說教學反思幾個方面對本節(jié)課加以說明。
一、下面先說說教材
1、教材的地位和作用
中職數(shù)學是中等職業(yè)學校各類專業(yè)學生必修的主要文化基礎課,學好這門課程對提高學生數(shù)學素養(yǎng)具有十分重要的意義。數(shù)列這一章是中職數(shù)學的重要內容之一。它不僅是函數(shù)知識的延伸,而且還有著非常廣泛的實際應用;同時數(shù)列還是培養(yǎng)學生數(shù)學思維能力的良好題材。
《等差數(shù)列的前n項和》是本章的第二節(jié),它為后繼學習提供了知識基礎,對提高學生分析、猜想、概括、歸納的能力有著重要的作用。
《等差數(shù)列》作為《數(shù)列》這一章中兩個最重要的數(shù)列之一,具有承上啟下的作用,它的研究和解決集中體現(xiàn)了研究《數(shù)列》問題的思想和方法。學習《等差數(shù)列的前n項和》對提高學生分析、猜想、概括、歸納的能力有著重要的作用。
2、教學目標根據(jù)教學大綱的要求和教學內容的結構特征,并結合學生學習的實際情況,我將本節(jié)課的教學目標確定為以下三個方面
知識目標:掌握等差數(shù)列的前n項和公式
能力目標:1、培養(yǎng)學生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法。
2、提高學生分析問題和解決問題的能力
情感目標:1、培養(yǎng)學生主動探索的精神和良好的學習習慣
2、讓學生在問題中感受學習的樂趣;
3、教學重點和難點。根據(jù)本節(jié)課的內容以及學生已掌握的知識情況我將
教學重點確定為:等差數(shù)列的前n項和公式及應用
教學難點確定為:應用等差數(shù)列解決有關問題
二、說教法學法
教法教學有法但教無定法,教學方法要與學生學習的實際情況相結合。
中職學生的生源質量逐年下降,大部分中職生基礎薄弱、理解接受能力較差,大多數(shù)學生不愛學習,不會學習。學生認為數(shù)學難,枯燥理解不了。對數(shù)學學習提不起興趣,因此在教學中我注重激發(fā)學生學習的興趣。本節(jié)課通過具體的實例引入,采用了問題、類比、發(fā)現(xiàn)、歸納的探究式教學方法。引導學生積極主動的去學習。在課堂教學中強調以學生為主體,注重精講多練。同時也注重學生非智力因素的培養(yǎng),增強學生的自信心和成就感。為學習營造寬松和諧的氛圍。另外在教學中使用多媒體教學手段等,提高教學質量和教學效果。
學法我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。倡導學生主動參與、樂于探究,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題和解決問題的能力。根據(jù)學生的認知水平,我設計了①創(chuàng)設情境—引入問題②分析歸納—解決問題③例題研究—運用新知④分組訓練—鞏固新知⑤總結歸納—提高認識⑥課后作業(yè)-自主探究六個層次的學法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學目標。
接下來,我再具體談一談這堂課的教學過程。
三、說教學過程
(一)創(chuàng)設情境——引入問題教學設想
我經(jīng)常在想:長期以來,我們的學生為什么對數(shù)學不感興趣,甚至害怕數(shù)學,其中一個重要因素就是數(shù)學離學生的生活實際太遠了。事實上,數(shù)學學習應該與學生的生活融合起來,從學生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學、探究數(shù)學、認識并掌握數(shù)學。
由生活中的實例一招聘信息引入:A公司月薪20xx元;B公司第一個月800元,以后逐月遞加200元。你愿意到哪家公司上班?為什么?在A、B公司一年各共領多少錢?五年呢?以此來激發(fā)學生的學習興趣。再給學生講數(shù)學家高斯的故事
1+2+3+…+100=
同學們,如果你是小高斯,你會怎么向老師解釋算法呢?
(二)分析歸納——解決問題教學設想
由高斯的解題過程:
S= 1+2+3+…+100
S= 100+99+98+…+1
2S=(100+1)×100
S=(100+1)100/2=5050
讓學生在在教師的啟發(fā)引導下,由被動地聽講變?yōu)橹鲃訁⑴c,敢于發(fā)表自己獨特的見解,并學會傾聽、尊重他人的意見。教師引導學生概括總結出本課新的知識點。
1、等差數(shù)列前n項求和公式
類似m+n=s+t am+an=as+at m,n,s,t∈N+
等差求和
倒排相加
另有
即(2)——類似梯形面積公式便于記憶
進而讓學生解決課前提出的問題
一年在A公司12×20xx
在B公司
800+900+1000+…1900
五年在A公司20xx×12×5
在B公司
800+900+1000+…+6700
——讓學生利用剛學的知識解決當前的問題,讓學生明白學以致用。
(三)例題研究——運用新知教學設想
通過例題,使學生加深對知識的理解,從而達到掌握、運用知識的效果
例1、(1)求正奇數(shù)前100項之和;
(2)求第101個正奇數(shù)到第150個正奇數(shù)之和;
(3)等差數(shù)列的通項公式為an=100-3n,求其前65項之和;
(4)在等差數(shù)列{an}中,已知a1=3,,求S10
例2、某長跑運動員7天每天的訓練量(單位:m)分別是7500,8000,8500,9000,9500,10000,10500,他在7天內共跑了多少米?
例3、設等差數(shù)列{an}的公差d=,,前n項之和Sn=。求a1及n
課堂上讓學生用兩種公式解題,有利于提高思維的靈活性,通過板演調動學生的積極性,也掌握本節(jié)課的重點和難點。
(四)分組訓練—鞏固新知
教學設想,例題過后,我特地設計了一組檢測題,
1、等差數(shù)列求和公式Sn=
2、等差數(shù)列{an}中,(1)a1=2,d=-1則Sn=
3、2c+4c+6c+…+2nc=
4、一堆圓木,每層總比上一層多一根,頂層4根,最底層21根,這堆木料有多少根?
5、一只掛鐘,遇整點就敲響,鐘響的次數(shù)是該點的時間數(shù),從1點到12點共響幾次?
通過游戲比賽的形式,活躍課堂氣氛,提高學生的學習興趣。來鞏固新知識。
(五)總結歸納——提高認識教學設想
讓學生通過所學內容的小結,對知識的發(fā)生發(fā)展有一個清晰的線索,把課堂所學知識構建起新的知識體系。同時養(yǎng)成良好的學習習慣。
(六)課后作業(yè)自主探究
教學設想
學生經(jīng)過以上五個環(huán)節(jié)的學習,已經(jīng)初步掌握了等差數(shù)列的前n項的求和,并解決了一些實際問題。
根據(jù)學生在課堂上知識掌握的情況有針對性布置課后作業(yè)。提高學生應用知識的能力。
四、說板書設計
我將這節(jié)課的板書設計為三列,一列為本節(jié)課的基本知識點,一列為例題,一列為講解。條理清晰,一目了然。
我認為板書設計在課堂教學中也很重要,好的板書就是一份微型教案,向學生展現(xiàn)了所學知識的框架,突出重點難點,清晰直觀地將授課內容傳遞給學生,便于學生理解掌握。
五、說教學反思
根據(jù)課堂教學情況,課后及時總結,不斷改進,精益求精,努力提高課堂教學效果。
結束:以上是我說課的內容,不當之處希望各位評委老師提出寶貴意見。
教學目標
1。通過教與學的互動,使學生加深對等差數(shù)列通項公式的認識,能參與編擬一些簡單的問題,并解決這些問題;
2。利用通項公式求等差數(shù)列的項、項數(shù)、公差、首項,使學生進一步體會方程思想;
3。通過參與編題解題,激發(fā)學生學習的興趣。
教學重點,難點
教學重點是通項公式的認識;教學難點是對公式的靈活運用.
教學用具
實物投影儀,多媒體軟件,電腦。
教學方法
研探式。
教學過程
一。復習提問
前一節(jié)課我們學習了等差數(shù)列的概念、表示法,請同學們回憶等差數(shù)列的定義,其表示法都有哪些?
等差數(shù)列的概念是從相鄰兩項的關系加以定義的,這個關系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應用。
二。主體設計
通項公式 反映了項 與項數(shù) 之間的函數(shù)關系,當?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知 求 )。找學生試舉一例如:“已知等差數(shù)列 中,首項 ,公差 ,求 ?!边@是通項公式的簡單應用,由學生解答后,要求每個學生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上。
1。方程思想的運用
(1)已知等差數(shù)列 中,首項 ,公差 ,則-397是該數(shù)列的第______項。
(2)已知等差數(shù)列 中,首項 , 則公差
(3)已知等差數(shù)列 中,公差 , 則首項
這一類問題先由學生解決,之后教師點評,四個量 , 在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量。
2?;玖糠椒ǖ氖褂?/p>
(1)已知等差數(shù)列 中, ,求 的值。
(2)已知等差數(shù)列 中, , 求 。
若學生的題目只有這兩種類型,教師可以小結(最好請出題者、解題者概括):因為已知條件可以化為關于 和 的二元方程組,所以這些等差數(shù)列是確定的,由 和 寫出通項公式,便可歸結為前一類問題。解決這類問題只需把兩個條件(等式)化為關于 和 的`二元方程組,以求得 和 , 和 稱作基本量。
教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學生回答后,教師再啟發(fā),由這一個條件可得到關于 和 的二元方程,這是一個 和 的制約關系,從這個關系可以得到什么結論?舉例說明(例題可由學生或教師給出,視具體情況而定)。
如:已知等差數(shù)列 中, …
由條件可得 即 ,可知 ,這是比較顯然的,與之相關的還能有什么結論?若學生答不出可提示,一定得某一項的值么?能否與兩項有關?多項有關?由學生發(fā)現(xiàn)規(guī)律,完善問題
(3)已知等差數(shù)列 中, 求 ; ; ; ;…。
類似的還有
(4)已知等差數(shù)列 中, 求 的值。
以上屬于對數(shù)列的項進行定量的研究,有無定性的判斷?引出
3。研究等差數(shù)列的單調性
,考察 隨項數(shù) 的變化規(guī)律。著重考慮 的情況。 此時 是 的一次函數(shù),其單調性取決于 的符號,由學生敘述結果。這個結果與考察相鄰兩項的差所得結果是一致的。
4。研究項的符號
這是為研究等差數(shù)列前 項和的最值所做的準備工作??膳鋫涞念}目如
(1)已知數(shù)列 的通項公式為 ,問數(shù)列從第幾項開始小于0?
(2)等差數(shù)列 從第________項起以后每項均為負數(shù)。
三。小結
1。 用方程思想認識等差數(shù)列通項公式;
2。 用函數(shù)思想解決等差數(shù)列問題。
四。板書設計
等差數(shù)列通項公式
1。 方程思想的運用
2。 基本量方法的使用
3。 研究等差數(shù)列的單調性
4。 研究項的符號
請同學們來思考這樣一個問題. 如果在a與b中間插入一個數(shù)A,使a、A、b成等差數(shù)列,那么A應滿足什么條件? 由等差數(shù)列定義及a、A、b成等差數(shù)列可得:A-a=b-A,即:a=. 反之,若A=,則2A=a+b,A-a=b-A,即a、A、b成等差數(shù)列. 總之,A= a,A,b成等差數(shù)列. 如果a、A、b成等差數(shù)列,那么a叫做a與b的等差中項. ?? 例題講解 [例1]在等差數(shù)列{an}中,已知a5=10,a15=25,求a25. 思路一:根據(jù)等差數(shù)列的已知兩項,可求出a1和d,然后可得出該數(shù)列的通項公式,便可求出a25. 思路二:若注意到已知項為a5與a15,所求項為a25,則可直接利用關系式an=am+(n-m)d.這樣可簡化運算. 思路三:若注意到在等差數(shù)列{an}中,a5,a15,a25也成等差數(shù)列,則利用等差中項關系式,便可直接求出a25的值. ? [例2](1)求等差數(shù)列8,5,2…的第20項. 分析:由給出的三項先找到首項a1,求出公差d,寫出通項公式,然后求出所要項. 答案:這個數(shù)列的第20項為-49. (2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項? 分析:要想判斷-401是否為這數(shù)列的一項,關鍵要求出通項公式,看是否存在正整數(shù)n,可使得an=-401. ∴-401是這個數(shù)列的第100項. ? Ⅲ.課堂練習1.(1)求等差數(shù)列3,7,11,……的'第4項與第10項. ? (2)求等差數(shù)列10,8,6,……的第20項. ? (3)100是不是等差數(shù)列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由. 2.在等差數(shù)列{an}中,(1)已知a4=10,a7=19,求a1與d; (2)已知a3=9,a9=3,求a12. Ⅳ.課時小結 通過本節(jié)學習,首先要理解與掌握等差數(shù)列的定義及數(shù)學表達式:an-an-1=d(n≥2).其次,要會推導等差數(shù)列的通項公式:an=a1+(n-1)d(n≥1),并掌握其基本應用.最后,還要注意一重要關系式:an=am+(n-m)d的理解與應用以及等差中項。 Ⅴ.課后作業(yè) 課本P39習題? 1,2,3,4
教學目標:
(1)理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;
(2)利用等差數(shù)列的通項公式能由a1,d,n,an“知三求一”,了解等差數(shù)列的通項公式的推導過程及思想;
(3)通過作等差數(shù)列的圖像,進一步滲透數(shù)形結合思想、函數(shù)思想;通過等差數(shù)列的通項公式應用,滲透方程思想。
教學重、難點:等差數(shù)列的定義及等差數(shù)列的通項公式。
知識結構:一般數(shù)列定義通項公式法
遞推公式法
等差數(shù)列表示法應用
圖示法
性質列舉法
教學過程:
(一)創(chuàng)設情境:
1.觀察下列數(shù)列:
1,2,3,4,……;(軍訓時某排同學報數(shù))①
10000,9000,8000,7000,……;(溫州市房價平均每月每平方下跌的價位)②
2,2,2,2,……;(坐38路公交車的車費)③
問題:上述三個數(shù)列有什么共同特點?(學生會發(fā)現(xiàn)很多規(guī)律,如都是整數(shù),再舉幾個非整數(shù)等差數(shù)列例子讓學生觀察)
規(guī)律:從第2項起,每一項與前一項的差都等于同一常數(shù)。
引出等差數(shù)列。
(二)新課講解:
1.等差數(shù)列定義:
一般地,如果一個數(shù)列從第項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母表示。
問題:(a)能否用數(shù)學符號語言描述等差數(shù)列的定義?
用遞推公式表示為或.
(b)例1:觀察下列數(shù)列是否是等差數(shù)列:
(1)1,-1,1,-1,…
(2)1,2,4,6,8,10,…
意在強調定義中“同一個常數(shù)”
(c)例2:求上述三個數(shù)列的公差;公差d可取哪些值?d>0,d=0,d
(d有不同的分類,如按整數(shù)分數(shù)分類,再舉幾個等差數(shù)列的例子觀察d的分類對數(shù)列的影
響)
說明:等差數(shù)列(通??煞Q為數(shù)列)的單調性:為遞增數(shù)列,為常數(shù)列,為遞減數(shù)列。
例3:求等差數(shù)列13,8,3,-2,…的第5項。第89項呢?
放手讓學生利用各種方法求a89,從中找出合適的方法,如利用不完全歸納法或累加法,然
后引出求一般等差數(shù)列的通項公式。
2.等差數(shù)列的通項公式:已知等差數(shù)列的首項是,公差是,求.
(1)由遞推公式利用用不完全歸納法得出
由等差數(shù)列的定義:,,,……
∴,,,……
所以,該等差數(shù)列的通項公式:.
(驗證n=1時成立)。
這種由特殊到一般的推導方法,不能代替嚴格證明。要用數(shù)學歸納法證明的。
(2)累加法求等差數(shù)列的通項公式
讓學生體驗推導過程。(驗證n=1時成立)
3.例題及練習:
應用等差數(shù)列的通項公式
追問:(1)-232是否為例3等差數(shù)列中的項?若是,是第幾項?
(2)此數(shù)列中有多少項屬于區(qū)間[-100,0]?
法一:求出a1,d,借助等差數(shù)列的通項公式求a20。
法二:求出d,a20=a5+15d=a12+8d
在例4基礎上,啟發(fā)學生猜想證明
練習:
梯子的最高一級寬31cm,最低一級寬119cm,中間還有3級,各級的寬度成等差數(shù)列,請計算中間各級的寬度。
觀察圖像特征。
思考:an是關于n的一次式,是數(shù)列{an}為等差數(shù)列的什么條件?
課后反思:這節(jié)課的重點是等差數(shù)列定義和通項公式概念的理解,而不是公式的應用,有些應試教育的味道。有時搶學生的回答,沒有真正放手讓學生的思維發(fā)展,學生活動太少,課堂氛圍不好。學生對問題的反應出乎設計的意料時,應該順著學生的思維發(fā)展。
感謝您閱讀“幼兒教師教育網(wǎng)”的《等差數(shù)列教案十四篇》一文,希望能解決您找不到幼兒園教案時遇到的問題和疑惑,同時,yjs21.com編輯還為您精選準備了等差數(shù)列教案專題,希望您能喜歡!
相關推薦
我們?yōu)槟暨x特別的“等差數(shù)列課件”,保證讓您連連驚喜。老師們在正式上課之前需要精心準備這個學期的教學教案課件,每個老師都要認真思考自己的教案課件。一個出色的教案是實現(xiàn)教學目標和落實教學內容的必不可少的工具。請務必將這篇文章收藏好,下次再讀。...
寫教案時教學要求一定要得當,教案與教師的教學工作息息相關。教案成為學生發(fā)展的主導者和促進者。有沒有寫好教案的秘訣呢?下面,我們?yōu)槟阃扑]了等差數(shù)列教案,相信你能從本文中找到需要的內容。...
俗話說,磨刀不誤砍柴工。作為一幼兒園的老師,我們需要讓小朋友們學到知識,為了提升學生的學習效率,準備教案是一個很好的選擇,教案可以幫助學生更好地進入課堂環(huán)境中來。怎么才能讓幼兒園教案寫的更加全面呢?小編為此仔細地整理了以下內容《等比數(shù)列教案匯編》,希望對你有所幫助,動動手指請收藏一下!所以Sn = ...
活動目標: 1、學習將一個物體分成相等的兩份、四份。 2、探索物體等分的多種方法,激發(fā)對等分的興趣。 3、發(fā)展觀察能力、比較能力。 活動準備: 課件、剪刀、圖形紙(圓形、長方形、正方形、三角形) 活動...
【活動目標】 1、通過操作活動讓幼兒感知許多物體(圖形)可以分成二等分、四等分,感知整體與部分的關系。 2、探索圖形等分的多種方法,激發(fā)幼兒對等分的興趣。 【活動準備】 幼兒常見的各種圖形(長方形、正...
最新更新