分數(shù)基本性質課件。
幼兒教師教育網(wǎng)的編輯為大家推薦的這篇文章內容深刻值得深思。教案是老師上課前需要準備好的課件,每個教師都需要仔細規(guī)劃教案課件。教案是實現(xiàn)教學目標的有效工具。感謝您對我們的喜愛和支持,我們會更加努力,希望大家多多關注我們的網(wǎng)站!
教學目標
知識與技能目標:
使學生理解和掌握分數(shù)的基本性質,能應用分數(shù)的基本性質把一個分
數(shù)化成指定分母而大小不變的分數(shù)。
過程與方法目標:
學生通過觀察、比較、發(fā)現(xiàn)、歸納、應用等過程,經(jīng)歷探究分數(shù)的基本性質的過程,初步學習歸納概括的方法。
情感態(tài)度與價值觀目標:
激發(fā)學生積極主動的情感狀態(tài),體驗互相合作的樂趣。
教學重點:理解、掌握分數(shù)的基本性質,能正確應用分數(shù)的基本性質。
教學難點:自主探究出分數(shù)的基本性質。
教學過程:
(一)創(chuàng)設情境,引發(fā)猜想
視頻1:小淘氣分餅的情境
有一天淘氣做了3塊大小一樣的餅分給藍貓、菲菲、霸王龍。藍貓說:“我功勞最大,我要吃一大塊?!?菲菲說:“我要吃兩塊?!卑酝觚垞屩f:“我個頭最大,我要吃3塊?!碧詺庀肓讼氡銊邮智酗灊M足了他們的要求,并向他們提問:“剛才,我把3個同樣大小的餅,平均分成2份、4份、6份,分別給了你們1塊、2塊、3塊,你們知道誰吃的多嗎?”淘氣的問題,立刻引起了他們的爭論。
師:同學們,你們知道誰吃的多嗎?
生:用分數(shù)表示出它們各吃了一塊餅的幾分之幾。
視頻2:出示三個分數(shù):1/2 2/4 3/6
(設計意圖:創(chuàng)設情境引出三個分數(shù)。并讓學生猜測這三個分數(shù)的大小關系,為自主探索研究“分數(shù)的基本性質”作必要的鋪墊,同時又很好地激發(fā)了學生的學習興趣)。
(二) 小組合作 探索新知。
1、小組合作,驗證猜想。
(1)這只是大家的猜想,究竟誰吃得多呢?親自分一分,驗證你們的猜想。
學生操作驗證——集體匯報交流——展示成果
視頻3:演示操作過程
(2)既然他們分得的餅同樣多,那么表示他們分得餅的三個分數(shù)是什么關系呢?
(學生得出結論,三個分數(shù)相等)
視頻4:出示驗證結論 (1/2= 2/4 =3/6)
(設計意圖:利用折一折、畫一畫、比一比的實際操作環(huán)節(jié),并通過媒體進一步演示讓每一位學生都能從比較中,感性地認識到這里的三個分數(shù)是相等的。)
一、教學目標
1.經(jīng)歷探索分數(shù)基本性質的過程,理解分數(shù)的基本性質。
2.能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
3.經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。
二、 教學重、難點
教學重點是:分數(shù)的基本性質。
教學難點是:對分數(shù)的基本性質的理解。
三、教學方法
采用了動手做一做、觀察、比較、歸納和直觀演示的方法
四、教學過程
(一)故事引入,揭示課題
1.教師講故事。
猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊?!庇谑?,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?
討論:哪只猴子分得的多?讓學生發(fā)表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。
引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數(shù)的基本性質”就清楚了。(板書課題)
2.組織討論。
(1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關系,14=28=312,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
(2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?通過觀察演示得出:34=68=912。
(3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?引導學生用不同的分數(shù)表示,然后得出:12=24=2040。
3.引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:
分數(shù)的分子和分母變化了,
分數(shù)的大小不變。
它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。
( 二)比較歸納,揭示規(guī)律
1.出示思考題。
比較每組分數(shù)的分子和分母:
(1)從左往右看,是按照什么規(guī)律變化的?
(2)從右往左看,又是按照什么規(guī)律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質。
(1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到68。
板書:
(2)34是怎樣變化成912的呢? 怎么填?學生回答后填空。
(3)引導口述:34的分子、分母都乘以2,得到68,分數(shù)的大小不變。
(4)在其它幾組分數(shù)中,分子、分母的變化規(guī)律怎樣?幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。
(板書:都乘以
相同的數(shù))
(5)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。
(板書:都除以)
(6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數(shù)基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規(guī)定“零除外”?
(板書:零除外)
(7)齊讀分數(shù)的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數(shù)”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數(shù)基本性質。
3.出示例2:把12和1024化成分母是12而大小不變的分數(shù)。
思考:要把12和1024化成分母是12而大小不變的分數(shù),分子、分母怎么變化?變化的依據(jù)是什么?
4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
5.質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。
( 三)溝通說明,揭示聯(lián)系
通過舉例,溝通分數(shù)的基本性質與商不變性質之間的聯(lián)系。引導學生運用分數(shù)與除數(shù)的關系,以及整數(shù)除法中商不變的性質,說明分數(shù)的基本性質。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
( 四)多層練習,鞏固深化
1.口答。(學生口答后,要求說出是怎樣想的?)
2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數(shù)的基本性質中哪幾個字不相符。)
一、說教材分析
《分數(shù)的基本性質》是義務教育課程標準實驗教材人教版五年級下冊第五單元的一個重要內容。該教學內容是以分數(shù)的意義、分數(shù)與除法的關系、整數(shù)除法中商不變的規(guī)律這些知識為基礎的。分數(shù)的基本性質是建立在分數(shù)大小相等這一概念基礎之上的。而兩個分數(shù)的大小相等,并不意味著兩個分數(shù)的分子、分母分別相同。分數(shù)的基本性質又是約分和通分的基礎,而約分和通分則是分數(shù)四則混合運算的重要基礎,因此,理解分數(shù)的基本性質顯得尤為重要。
二、說教學目標
根據(jù)教材分析制定如下的教學目標:
知識與技能:
1、使讓學生理解分數(shù)的基本性質,并會應用分數(shù)的基本性質把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
2、培養(yǎng)學生觀察、分析和抽象概括能力。
過程與方法:
1、讓學生經(jīng)歷分數(shù)基本性質的探究過程。
2、通過引導啟發(fā),幫助學生學會應用分數(shù)的基本性質把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)的方法。
情感態(tài)度與價值觀:
1、體驗合作探究的樂趣,培養(yǎng)學生的團結協(xié)作精神。
2、滲透“事物間相互聯(lián)系”的辯證唯物主義觀點。
教學重點:理解分數(shù)基本性質。
教學難點:歸納分數(shù)的基本性質,并運用性質轉化分數(shù)。
教具教學準備:
多媒體課件,小棒、紙條、圓形紙片
三、說教學策略
為了營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著“將課堂還給學生,讓課堂煥發(fā)生命活力”的指導思想,根據(jù)學生的認知規(guī)律,我采取以下教學策略:
1、采用了創(chuàng)設情境、引導探究、引導自學、組織討論、組織練習等教學策略。
2、實際操作:指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數(shù)基本性質的理解,促進學生的感性認識逐步理性化。
3、引導概括:先讓學生充分感知,發(fā)現(xiàn)規(guī)律,然后比較歸納,最后概括出分數(shù)的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
4、新課標指出:有效的數(shù)學學習活動,不能單純模仿與記憶。動手實踐、自主探索與合作交流是本節(jié)課學生學習的重要方式。
四、說教學流程
結合五年級學生的理解能力和年齡特征,我將本課的教學設計為六個環(huán)節(jié)。
(一)、創(chuàng)設情境,引發(fā)猜想
首先我為學生帶來一個《猴王分餅》的故事。
猴山上的小猴子最喜歡吃猴王做的餅了,有一天,猴王做了三塊大小一樣的餅分給小猴子吃。它先把第一塊餅平均切成4塊,分給猴1一塊;猴2見了說:“太少了,我要2塊。”猴王又把第二塊餅平均切成8塊,分給猴2兩塊;猴3更貪,它搶著說:“我要3塊,我要3塊……”猴王又把第三塊餅平均切成12塊,分給猴3兩。小朋友,你知道哪只猴子分得的餅多嗎?
“同學們,你們認為猴王分得公平嗎?”引發(fā)學生的猜想。
(這樣就激發(fā)了學生的學習興趣,為后面的學習做好了鋪墊。)
(二)自主探索,尋找規(guī)律
(下面這個環(huán)節(jié)是課堂教學的中心環(huán)節(jié),新課標強調,要讓學生在實踐活動中進行探索性的學習。根據(jù)這一理念,我設計了下面的活動。讓學生在體驗中學習,在學習中體驗。)
1、小組合作 驗證猜想
這只是大家的猜想,究竟哪只猴子分得的餅多呢?親自分一分,驗證你們的猜想。
學生操作驗證---集體匯報交流----展示成果
2、既然三只小猴分得的餅同樣多,那么表示他們分得餅的三個分數(shù)是什么關系呢?這三個分數(shù)什么變了,什么沒變?
學生得出:這三個分數(shù)是相等關系,分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
3、猴王把三張大小一樣的餅分給小猴一部分后,剩下的部分大小相等嗎?通過觀察演示得出3/4=6/8=9/12
4、我們班有64名同學,分成了四組,每組16人。那么,第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?引導學生用不同的分數(shù)表示,然后得出1/2=2/4=32/64
(三)比較歸納 揭示規(guī)律
1、出示思考題
1/4=2/8=3/12
比較每組分數(shù)的分子和分母:
從左往右看,是按照什么規(guī)律變化的?
從右往左看,又是按照什么規(guī)律變化的?
通過觀察,你發(fā)現(xiàn)了什么?
讓學生帶著上面的思考題,先獨立思考,后小組討論、交流。
2、集體交流,歸納性質。
3、師生共同總結規(guī)律,找出性質中的關鍵詞,然后齊讀,注意關鍵的字詞要重讀。
4、現(xiàn)在,大家知道猴王是運用什么性質分餅了嗎?
5、溝通分數(shù)的基本性質與商不變性質之間的聯(lián)系。引導學生應用分數(shù)和除法的關系,以及整數(shù)除法中商不變的性質,說明分數(shù)的基本性質。
(這樣的設計就讓學生感受到了數(shù)學知識的內在聯(lián)系,同時滲透“事物之間是相互聯(lián)系”的辨證唯物主義觀點)
(四)自學例2
1、自學例2。
2/3 = 2×()/3×4 =()/12
10/24 = 10 ( )/24 ( ) = ( )/12
2、展示交流:重點讓學生說說分母、分子是如何變化的?根據(jù)什么?
這樣設計的目的是學生學會的老師不包辦,從而培養(yǎng)了學生的自學能力。
(五)多層練習 鞏固深化
1、填上合適的數(shù),說說你填寫的根據(jù)
1/3 =()/6 10/15 =()/3 1/4 = 5/()
我想通過這道題讓學生進一步加深對分數(shù)基本性質的形成過程的理解,從而培養(yǎng)學生的語言表達能力。
2、說一說下面各式運用分數(shù)的基本性質是否正確
5/24=5×2/24÷2=10/12 ( )
4/9=4÷2/9÷3=2/3 ( )
13/18=13+2/18+2=15/20 ( )
在這我設計了同學們在平時做題中容易混淆的問題,提醒同學們今后要注意。
3、想一想:(選擇你喜歡的一道題來做)
與1/2相等的分數(shù)有多少個?想像一下把手中的正方形的紙無限地平分下去,可得到多少個與1/2相等的分數(shù)?
9/24和20/32哪一個數(shù)大一些,你能講出判斷的依據(jù)嗎?
在這我讓同學們充分發(fā)揮想象,靈活運用分數(shù)的基本性質。為后面學習約分和通分的知識奠定基礎。
(六)本課小結
同學們,通過這節(jié)課,你有哪些收獲?
學生在交流收獲的過程中,培養(yǎng)學生的知識概括能力。
五、說教學評價
1、教學過程中采用自我、小組、集體等多種評價方式,激發(fā)起學生交流的興趣。
2、多媒體課件的應用,創(chuàng)設生動的教學情境。
3、學生在發(fā)現(xiàn)、體驗、合作、交流、歸納、總結中,自主參與整個學習過程,營造獨立、自主的學習空間,學生成為課堂的主人。
教學內容:省編義務教材第十冊第91—93頁例1、例2。
教學目標:
1、體驗分數(shù)基本性質的探究過程,建構分數(shù)基本性質的意義內涵。
2、溝通分數(shù)的基本性質和商不變性質的內在聯(lián)系,實現(xiàn)新知化歸舊知,并與后面約分和通分的學習作好前期孕伏。
3、通過猜想、驗證、得出結論這充分自主的數(shù)學活動,促進學生學習經(jīng)驗的不斷積累。
課前準備:
課件,學具袋一個(線段圖紙、長方形、繩子)、探究紙一張
教學過程:
1.創(chuàng)設情境,作好鋪墊
出示四分之二后說:老師的信封里有一道算式,這道算式和這個分數(shù)的值相等,你們猜這是一道怎樣的算式?(除法算式。)你能具體猜出是怎樣一道除法算式。(2÷4)
為什么你會猜是一道除法算式?(分數(shù)與除法有密切的關系)
除法與分數(shù)有什么樣的關系?
(黑板上出示:被除數(shù)÷除數(shù)=)
根據(jù)2÷4這道除法算式,每人都試著說一道與它相等的除法算式。(根據(jù)學生板書:1÷23÷64÷85÷10100÷……)
為什么你認為100÷與2÷4的商是一樣的?(2和4同時乘以50商不變,這是根據(jù)商不變性質)
什么是商不變性質?(出示:被除數(shù)和除數(shù)同時乘以或除以相同的數(shù)(0除外),商不變。)
2、遷移猜想,引疑激思
分數(shù)與除法有這樣的關系,除法中有商不變性質,那你們猜分數(shù)中有可能存在著類似的性質嗎?(有)你能具體說一說?
交流得出:分子和分母同時乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。
3、自主探究,驗證猜想
也許你們的猜想是正確的,科學家的發(fā)現(xiàn)往往也是從猜想開始的,但是只有通過驗證得到的結論才是科學的,這節(jié)課我們也學著來做一名小數(shù)學家。
(1)初步驗證
①出示:探究報告單,讓學生讀要求:
a.同桌合作:兩人各寫一個分數(shù),將它的分子、分母同時乘以或除以一個相同的數(shù),算出新的分數(shù)。
b.選擇合理的方法驗證所前后兩個分數(shù)是否相等。
c.填寫好探究報告單。
選擇探究的
分數(shù)
分子和分母同時乘以或除以
一個相同的數(shù)
得到的
分數(shù)
選擇的分數(shù)與得到的分數(shù)是否相等
相等()不相等()
猜想是否成立
成立()不成立()
選擇的分數(shù)與得到的分數(shù)是否相等相等()不相等()
猜想是否成立成立()不成立()
*:驗證方法可用折紙、畫線段圖、計算、實物……
②學生合作進行探究。
③全班交流:
a、同桌一起上來,拿好探究報告單及驗證材料等。
b、兩人合作,一人講解、一人驗證演示。
c、得到結論:
(交流2-3組后)問全班同學:你們得到怎樣的結論?(一致通過)
剛才我們通過集體努力用不同的方法、不同的分數(shù)驗證了我們的猜想是成立的。這就是分數(shù)的基本性質,板書:分數(shù)的基本性質。(齊讀)
4、議論爭辯,頓悟創(chuàng)新
讀一讀分數(shù)的基本性質,你認為哪些字詞是比較重要的。這里的“相同的數(shù)”指的是什么數(shù)?為什么要“0除外”?
5、訓練技能,激勵發(fā)展
剛才我們通過自己的猜想、驗證得出的這條規(guī)律,學習了分數(shù)的基本性質,到底有什么作用呢?讓我們一起來體會一下。
(1)練習明目的
根據(jù)分數(shù)的基本性質,填空。
1/2=()/8=5/()=()/6=7/()
采取師生對數(shù)的游戲形式進行,如先由教師出分子,再讓學生對出分母,也可以先由學生出分母,再讓教師對出分子。
(2)慧眼辯是非
(3)變式練思維
把下面每組中的異分母分數(shù)化成同分母分數(shù)。
A、3/4,4/7B、5/6,4/9C、3/5,5/8
分數(shù)的分母相同了,有什么作用?揭示學習分數(shù)的基本性質的重要性,鼓勵學生學好、用好。
(4)競賽促智慧
①在1—9九個數(shù)字中任選一些數(shù)字組成大小相等的分數(shù)。
可以有:1/2=3/6=4/81/3=2/62/3=4/6這三組。
并讓學生繼續(xù)往下說,從而得出:任何一個分數(shù)與之相等的分數(shù)有無數(shù)個。
②出示:1/a=7/b(說明:a、b都不是0。)
搶答:a=2、a=3、a=6、b=28、b=56時a或b的值。
連貫口答:a=1、2、3、4、5……時b的值。(滲透正比例)
討論:a、b之間的關系是怎樣的?為什么會存在這樣的關系?依據(jù)是什么?
6、回顧,掌握方法
今天這節(jié)課我們學習的分數(shù)的基本性質,回憶一下我們是怎樣學習的?
學生可能會回答:
生1:我們是根據(jù)“商不變的性質”來學習“分數(shù)的基本性質”的。
生2:我們是通過猜測的方法學的。
生3:我們還用驗證的方法學習。
……
結果語:是的,這節(jié)課,我們利用除法和分數(shù)的關系以及商不變性質,猜想出分數(shù)的基本性質,并且進行了驗證與運用,其實數(shù)學知識都是相互聯(lián)系的,學習數(shù)學就要學會利用已有知識,去學習新的知識,這就是學習數(shù)學的一把金鑰匙。老師把這把金鑰匙送給每一位同學。
學習內容分析:
“分數(shù)的基本性質”是九年義務教育小學數(shù)學北師大版五年級上冊第三單元的內容。它是在學生學習了分數(shù)的意義、分數(shù)大小的比較、商不變的性質、分數(shù)與除法的關系的基礎上進行的,為以后學習約分、通分做準備。
學習者分析:
學生已掌握了分數(shù)的意義和商不變的性質,已具備一定的動手操作的能力和分析、概括能力,能用分數(shù)表示圖形的陰影部分,已具備一定的合作交流的意識和經(jīng)驗。
教學目標:
1:經(jīng)歷探索分數(shù)基本性質的過程,理解分數(shù)基本性質;
3:經(jīng)歷猜想、驗證、實踐等數(shù)學活動,合作學習能力得到提高,并進一步體驗數(shù)學學習的樂趣。
教學重點:
經(jīng)歷主動探索過程并發(fā)現(xiàn)和歸納分數(shù)的基本性質。
教學難點:
能利用分數(shù)基本性質轉化分數(shù)。
設計意圖:
“分數(shù)的基本性質”在分數(shù)教學中占有重要的地位,它是約分,通分的依據(jù),對于以后學習比的基本性質也有很大的幫助,所以,分數(shù)的基本性質是本單元的教學重點之一,以前我曾經(jīng)聽過幾節(jié)這樣的課,感覺學生都比較容易理解,覺得這知識不難,用不著老師多講了,也就使整節(jié)課顯得有點單調,枯燥。
基于以上原因,我在設計這節(jié)課時,大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數(shù)學知識,更主要的是數(shù)學學習的方法,從而激勵學生進一步地主動學習,產(chǎn)生我會學的成就感。
1、直接寫出得數(shù):
(1)18÷6= (2)120÷40= (3)2÷3=—
180÷60= 12÷4= 10÷15=—
2、你能從前兩組題中回憶起商不變性質嗎?(被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù),商不變。)
3、你能根據(jù)第三組題說出分數(shù)與除法的關系嗎?根據(jù)分數(shù)與除法的關系,將商不變性質中的被除數(shù)、除數(shù)、商分別改為分子、分母、分數(shù)值后又怎么說?(分子和分母同時擴大或縮小相同的倍數(shù),分數(shù)值不變。)分數(shù)中是否真有這樣的規(guī)律呢?這節(jié)課我們就來探討這個問題。
(通過上述知識的復習,為下面溝通商不變性質與分數(shù)基本性質的聯(lián)系作準備。)
要求:1)將三張同樣大小的長方形紙片,分別平均分成4份、8份、16份。將第一張的3份畫上陰影,第二張的6份畫上陰影,第三張的12份畫上陰影。
2)用分數(shù)表示陰影部分,
3)將陰影部分剪下來進行比較,看看能發(fā)現(xiàn)什么?
2、匯報。(師將一份學生作品貼在黑板上),
請這一同學談談發(fā)現(xiàn):通過比較,三幅圖陰影部分面積一樣,因而三個分數(shù)一樣大。(師板書三個分數(shù)相等的式子)
3、師出示例2的三幅圖。
4、請學生寫出表示陰影部分的分數(shù),再觀察三幅圖陰影部分面積,同樣得出三個分數(shù)一樣大的結論。
師:觀察第一組的三幅圖,平均分的份數(shù)和取出的份數(shù)有什么變化嗎?第二組的三幅圖,你又從中發(fā)現(xiàn)了什么?
1)師:剛才大家借助圖形發(fā)現(xiàn)同一組的三個分數(shù)是一樣大的。下面,請大家仔細觀察每一組中三個相等分數(shù)的分子和分母,你又能發(fā)現(xiàn)什么?
2)學生先獨立思考,后小組里討論交流想法。
3)匯報。小組派代表匯報,教師根據(jù)匯報適當板書。
(通過折一折、畫一畫,培養(yǎng)學生的動手操作能力,同時給學生提供充分的感性材料,豐富他們的生活經(jīng)驗又可以激發(fā)學生的學習興趣。)
1、師:哪位同學能用一句話把大家發(fā)現(xiàn)的規(guī)律概括出來呢?
2、師:像右邊那樣列式行嗎? = ,為什么?你能將剛才概括出的規(guī)律修正一下嗎?(出示分數(shù)的基本性質,全班齊讀一遍。)
3、師小結:剛才我們所說的就是分數(shù)的基本性質,它在課本第四十三頁,請同學們翻開課本看一看,你有哪個地方要提醒大家注意的,請在課本上用筆標示出來。(全班再齊讀一遍)
(讓學生概括分數(shù)的基本性質,培養(yǎng)學生的概括能力,通過分子分母同時乘以0,引導學生發(fā)現(xiàn)分母為0,分數(shù)沒有意義,以培養(yǎng)學生思維的縝密性,同時回應前面的復習練習。)
2、第43頁試一試。
觀察分母(或分子)發(fā)生了什么變化,然后在括號里填上適當?shù)臄?shù)。學生獨立完成后,指名回答,著重讓學生說說自己的想法
(1)分數(shù)的分子和分母都乘或除以相同的數(shù),分數(shù)的大小不變。 ( )
(2)把15/20的分子縮小5倍,分母也縮小5倍,分數(shù)的大小不變。 ( )
(4)10/24的分子加5,要使分數(shù)的大小不變,分母也必須加5。 ( )
(利用以上練習,運用所學的知識解決實際問題,提高解決問題的能力,培養(yǎng)應用意識。)
這節(jié)課你有什么收獲?運用分數(shù)的基本性質解決問題時要注意什么?
感謝您閱讀“幼兒教師教育網(wǎng)”的《分數(shù)的基本性質課件》一文,希望能解決您找不到幼師資料時遇到的問題和疑惑,同時,yjs21.com編輯還為您精選準備了分數(shù)基本性質課件專題,希望您能喜歡!
相關推薦
這篇文章旨在幫助您更全面地理解“分數(shù)的基本性質的教案”的內涵和意義。感謝您的閱讀和留言,這給了我繼續(xù)創(chuàng)作的動力。教案和課件是老師需要精心準備的重要教學工具,因此老師需要花時間去自己制作教案和課件。教案的設計是確保課堂教學效果的保證之一。...
俗話說,凡事預則立,不預則廢。作為幼兒園老師的我們的課堂上能更好的發(fā)揮教學效果,優(yōu)秀的教案能幫老師們更好的解決學習上的問題,有了教案上課才能夠為同學講更多的,更全面的知識。我們要如何寫好一份值得稱贊的幼兒園教案呢?經(jīng)過整理,小編為你呈上比例的基本性質教案課件通用,相信會對你有所幫助!教學目的:1.理...
老師在新授課程時,一般會準備教案課件,所以老師寫教案可不能隨便對待。教案是提高教學效果的重要手段,我們應該從什么方面寫教案課件?經(jīng)過細致的篩選編輯為大家整理出了一篇最新的“比例的基本性質課件”,有需要的朋友就來看看吧!...
老師在正式上課之前需要寫好本學期教學教案課件,每位老師都要用心的考慮自己的教案課件。教案是教學內容的詳細規(guī)劃,大家在寫教案課件前考慮哪些問題?有關“比例的基本性質課件”不妨看看欄目小編為您推薦的這篇文章,讓我們都努力變得更加優(yōu)秀吧!...
經(jīng)驗告訴我們,成功是留給有準備的人。當一次工作學習即將開始時,我們通常會提前查閱一些資料。資料主要是指生活學習工作中需要的材料。有了資料的幫助會讓我們在工作中更加如魚得水!那么,想必你在找可以用得到的幼師資料吧?經(jīng)過整理,小編為你呈上最新比的基本性質課件優(yōu)選4篇,相信你能從中找到需要的內容!一、教學...
最新更新