作為一名優(yōu)秀的教育工作者,有必要進行細致的教學設計準備工作,教學設計要遵循教學過程的基本規(guī)律,選擇教學目標,以解決教什么的問題。那么問題來了,教學設計應該怎么寫?以下是小編收集整理的《勾股定理》教學設計,歡迎閱讀,希望大家能夠喜歡。
一、教學目標
(一)教學知識點
1.掌握勾股定理,了解利用拼圖驗證勾股定理的方法.
2.運用勾股解決一些實際問題.
(二)能力訓練要求
1.學會用拼圖的方法驗證勾股定理,培養(yǎng)學生的創(chuàng)新能力和解決實際問題的能力.
2.在拼圖過程中,鼓勵學生大膽聯(lián)想,培養(yǎng)學生數(shù)形結(jié)合的意識.
(三)情感與價值觀要求
利用拼圖的方法驗證勾股定理,是我國古代數(shù)學家的一大貢獻.借助對學生進行愛國主義教育.并在拼圖的過程中獲得學習數(shù)學的快樂,提高學習數(shù)學的興趣.
二.教學重、難點
重點:勾股定理的證明及其應用.
難點:勾股定理的證明.
三.教學方法
教師引導和學生自主探索相結(jié)合的方法.
在用拼圖的方法驗證勾股定理的過程中.教師要引導學生善于聯(lián)想,將形的問題與數(shù)的問題聯(lián)系起來,讓學生自主探索,大膽地聯(lián)系前面知識,推導出勾股定理,并自己嘗試用勾股定理解決實際問題.
四.教具準備
1.每個學生準備一張硬紙板;
2.投影片三張:
第一張:問題串(記作1.1.2 A);
第二張:議一議(記作1.1.2 B);
第三張:例題(記作1.1.2 C).
五.教學過程
Ⅰ.創(chuàng)設問題情景,引入新課
[師]我們曾學習過整式的運算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(ab)2=a22ab+b2是非常重要的內(nèi)容.誰還能記得當時這兩個公式是如何推出的?
[生]利用多項式乘以多項式的法則從公式的左邊就可以推出右邊.例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的.
[生]還可以用拼圖的方法來推出.例如:(a+b)2=a2+2ab+b2.我們可以用一個邊長為a的正方形,一個邊長為b的正方形,兩個長和寬分別為a和b的長方形可拼成如下圖所示的邊長為(a+b)的正方形,那么這個大的正方形的面積可以表示為(a+b)2;又可以表示為a2+2ab+b2.所以(a+b)2=a2+2ab+b2.
教學目標具體要求:
1.知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題。
2.過程與方法目標:經(jīng)歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。
3.情感態(tài)度與價值觀目標:通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;通過有關勾股定理的歷史講解,對學生進行德育教育。
重點:
勾股定理的應用
難點:
勾股定理的應用
教案設計
一、知識點講解
知識點1:(已知兩邊求第三邊)
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為_____________。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。
3.三角形ABC中,AB=10,AC=17,BC邊上的高線AD=8,求BC的長?
知識點2:
利用方程求線段長
1、如圖,公路上A,B兩點相距25km,C,D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在公路AB上建一車站E,
(1)使得C,D兩村到E站的距離相等,E站建在離A站多少km處?
(2)DE與CE的位置關系
(3)使得C,D兩村到E站的距離最短,E站建在離A站多少km處?
利用方程解決翻折問題
2、如圖,用一張長方形紙片ABCD進行折紙,已知該紙片寬AB為8cm,長BC為10cm.當折疊時,頂點D落在BC邊上的'點F處(折痕為AE).想一想,此時EC有多長?
3、在矩形紙片ABCD中,AD=4cm,AB=10cm,按圖所示方式折疊,使點B與點D重合,折痕為EF,求DE的長。
4.如圖,將一個邊長分別為4、8的矩形形紙片ABCD折疊,使C點與A點重合,則EF的長是多少?
5、折疊矩形ABCD的一邊AD,折痕為AE,且使點D落在BC邊上的點F處,已知AB=8cm,BC=10cm,以B點為原點,BC為x軸,BA為y軸建立平面直角坐標系。求點F和點E坐標。
6、邊長為8和4的矩形OABC的兩邊分別在直角坐標系的x軸和y軸上,若沿對角線AC折疊后,點B落在第四象限B1處,設B1C交x軸于點D,求(1)三角形ADC的面積,(2)點B1的坐標,(3)AB1所在的直線解析式.
知識點3:判斷一個三角形是否為直角三角形間接給出三邊的長度或比例關系
1.(1).若一個三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個三角形是___________。
(2).將直角三角形的三邊擴大相同的倍數(shù)后,得到的三角形是____________。
(3)在ABC中,a:b:c=1:1:,那么ABC的確切形狀是_____________。
2.如圖,正方形ABCD中,邊長為4,F(xiàn)為DC的中點,E為BC上一點,CE=BC,你能說明∠AFE是直角嗎?
變式:如圖,正方形ABCD中,F(xiàn)為DC的中點,E為BC上一點,且CE=BC,你能說明∠AFE是直角嗎?
3.一位同學向西南走40米后,又走了50米,再走30米回到原地。問這位同學又走了50米后向哪個方向走了
二、課堂小結(jié)
談一談你這節(jié)課都有哪些收獲?
應用勾股定理解決實際問題
三、課堂練習以上習題。
四、課后作業(yè)卷子。
本節(jié)課是人教版數(shù)學八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學生在學習了三角形的有關知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎上學習勾股定理,加深對勾股定理的理解,提高學生對數(shù)形結(jié)合的應用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學生解決問題的意識和應用能力。
針對本班學生的特點,學生知識水平、學習能力的差距,本節(jié)課安排了如下幾個環(huán)節(jié):
一、復習引入
對上節(jié)課勾股定理內(nèi)容進行回顧,強調(diào)易錯點。由于學生的注意力集中時間較短,學生知識水平低,引入內(nèi)容簡短明了,花費時間短。
二、例題講解,鞏固練習,總結(jié)數(shù)學思想方法
活動一:用對媒體展示搬運工搬木板的問題,讓學生以小組交流合作,如何將木板運進門內(nèi)?需要知道們的寬、高,還是其他的條件?學生展示交流結(jié)果,之后教師引導學生書寫板書。整個活動以學生為主體,教師及時的引導和強調(diào)。
活動二:解決例二梯子滑落的問題。學生自主討論解決問題,書寫過程,之后投影學生書寫過程,教師與學生一起合作修改解題過程。
活動三:學生討論總結(jié)如何將實際生活中的問題轉(zhuǎn)化為數(shù)學問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學活動中發(fā)展了學生的探究意識和合作交流的習慣;體會勾股定理的應用價值,讓學生體會到數(shù)學來源于生活,又應用到生活中去,在學習的過程中體會獲得成功的喜悅,提高了學生學習數(shù)學的興趣和信心。
二、鞏固練習,熟練新知
通過測量旗桿活動,發(fā)展學生的探究意識,培養(yǎng)學生動手操作的能力,增加學生應用數(shù)學知識解決實際問題的經(jīng)驗和感受。
在教學設計的實施中,也存在著一些問題:
1.由于本班學生能力的差距,本想著通過學生幫帶活動,使學困生充分參與課堂,但在學生合作交流是由于學習能力強的學生,對問題的分析解決所用時間短,而在整個環(huán)節(jié)設計中轉(zhuǎn)接的快,未給學困生充分的時間,導致部分學生未能真正的參與到課堂中來。
2.課堂上質(zhì)疑追問要起到好處,不要增加學生展示的難度,影響展示進程出現(xiàn)中斷或偏離主題的現(xiàn)象。
3.對學生課堂展示的評價方式應體現(xiàn)生評生,師評生,及評價的針對性和及時性。
[教學分析]
勾股定理是揭示三角形三條邊數(shù)量關系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。
本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學問題中的應用,使學生對勾股定理的作用有一定的認識。
[教學目標]
一、知識與技能
1、探索直角三角形三邊關系,掌握勾股定理,發(fā)展幾何思維。
2、應用勾股定理解決簡單的實際問題
3學會簡單的合情推理與數(shù)學說理
二、過程與方法
引入兩段中西關于勾股定理的史料,激發(fā)同學們的興趣,引發(fā)同學們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學表達能力,并感受勾股定理的應用知識。
三、情感與態(tài)度目標
通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養(yǎng)學生的合作交流意識和探索精神,以及自主學習的能力。
四、重點與難點
1、探索和證明勾股定理
2、熟練運用勾股定理
[教學過程]
一、創(chuàng)設情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?/p>
2、教師展示圖片并介紹第二情景
畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題
1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學家趙爽高超的證題思想和對數(shù)學的鉆研精神,是我們中華民族的驕傲。
五、應用舉例,拓展訓練,鞏固反饋。
勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當中有著廣泛的應用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結(jié)
1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題
2、方法歸納:數(shù)方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
七、討論交流
讓學生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。
我們班的同學很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發(fā)表一下自己的學習心得。
教材分析
1.勾股定理的逆定理是研究特殊三角形——直角三角形的一種判定方法,體現(xiàn)了數(shù)形結(jié)合的思想。
2.通過勾股定理與它的逆定理的學習,加深了學生對性質(zhì)與判定之間辨證統(tǒng)一關系的認識。
3.完善了知識結(jié)構(gòu),為后繼學習打下基礎。
學情分析
初中生已經(jīng)具備一定的獨立思考和探索能力,并能在探索過程中形成自已的觀點,能在傾聽別人意見的過程中逐漸完善自已的想法,而且本班學生比較上進,思維活躍,愿意表達自已的見解,有一定的互動互助基礎。
教學目標
1.知識與技能:
(1)理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
(2)掌握勾股定理的逆定理,并能應用勾股定理的逆定理判定一個三角形是不是直角三角形。
2.過程與方法
(1)通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成過程。
(2)通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)形結(jié)合方法的應用。
(3)通過對勾股定理的逆定理的證明,體會數(shù)形結(jié)合方法在問題解決中的作用,并能應用勾股定理的逆定理來解決相關問題。
3.情感態(tài)度
(1)通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧與辨證統(tǒng)一的關系
(2)在探索勾股定理的逆定理的活動中,通過一系列的富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
教學重點和難點
教學重點:勾股定理的逆定理及起應用
教學難點:勾股定理的逆定理的證明
一、教案背景概述:
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的"形"的特點,轉(zhuǎn)化為三邊之間的"數(shù)"的關系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學教學內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
學生分析:
1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設計,能非常簡單地將學生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關的人文歷史知識為背景展開對直角三角形三邊關系的討論,能激發(fā)學生的學習興趣。
設計理念:
本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學生學習數(shù)學的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學目標:
1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、培養(yǎng)學生學習數(shù)學的興趣和愛國熱情。
4、欣賞設計圖形美。
二、教案運行描述:
教學準備階段:
學生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關人物歷史資料等投影圖片。
三、教學流程:
(一)引入
同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關系)
(二)實驗探究
取方格紙片,在上面先設計任意格點直角三角形,再以它們的每一邊分別向三角形外作正方形,設網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計算每個正方形的面積。
(三)探索所得結(jié)論的正確性
當直角三角形的直角邊分別為a 、b,斜邊為c時, 是否一定成立?
1、指導學生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)
在學生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理。
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數(shù)學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數(shù)學家,特別選用他設計的這種圖形為主圖發(fā)行了一枚紀念郵票。
師介紹: (出示圖片) 中國古代數(shù)學家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前2000年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的`等高差,公元前1100年左右,西周的數(shù)學家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關系,既嚴密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學家。我國數(shù)學家們?yōu)榱思o念我國在這方面的數(shù)學成就,將這一結(jié)論命名為"勾股定理"。
師介紹:(出示圖片)勾股定理是數(shù)學史上的一顆璀璨明珠,它的證明在數(shù)學史上屢創(chuàng)奇跡,從畢達哥拉斯到現(xiàn)在,吸引著世界上無數(shù)的數(shù)學家、物理學家、數(shù)學愛好者對它的探究,甚至政界要人——美國第20任總統(tǒng)加菲爾德,也加入到對它的探索證明中,如圖是他當年設計的證明方法。據(jù)說至今已經(jīng)找到的證明方法有四百多種,且每年還會有所增加。(若有時間可以繼續(xù)出示學生中有價值的圖片進行討論),有興趣的同學課后可以繼續(xù)探索……
四、總結(jié):
本節(jié)課學習的勾股定理用語言敘說為:
五、作業(yè):
1、繼續(xù)收集、整理有關勾股定理的證明方的探索問題并交流。
2、探索勾股定理的運用。
學習目標
1、通過拼圖,用面積的方法說明勾股定理的正確性.
2.探索勾股定理的過程,發(fā)展合情推理的能力,體會數(shù)型結(jié)合的思想。
重點難點
或?qū)W習建議學習重點:用面積的方法說明勾股定理的正確.
學習難點:勾股定理的應用.
學習過程教師
二次備課欄
自學準備與知識導學:
這是1955年希臘為紀念一位數(shù)學家曾經(jīng)發(fā)行的郵票。
郵票上的圖案是根據(jù)一個著名的數(shù)學定理設計的。
學習交流與問題研討:
1、探索
問題:分別以圖中的直角三角形三邊為邊向三角形外
作正方形,小方格的面積看做1,求這三個正方形的面積?
S正方形BCED=S正方形ACFG=S正方形ABHI=
發(fā)現(xiàn):
2、實驗
在下面的方格紙上,任意畫幾個頂點都在格點上的三角形;并分別以這個三角形的各邊為一邊向三角形外做正方形并計算出正方形的面積。
請完成下表:
S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關系
112
145
41620
91625
發(fā)現(xiàn):
如何用直角三角形的三邊長來表示這個結(jié)論?
這個結(jié)論就是我們今天要學習的勾股定理:
如圖:我國古代把直角三角形中,較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”,所以勾股定理可表示為:弦股還可以表示為:或勾
練習檢測與拓展延伸:
練習1、求下列直角三角形中未知邊的長
練習2、下列各圖中所示的線段的長度或正方形的面積為多少。
(注:下列各圖中的三角形均為直角三角形)
例1、如圖,在四邊形中,∠,∠,,求.
檢測:
1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;
(2)b=8,c=17,則S△ABC=________。
2、在Rt△ABC中,∠C=90,周長為60,斜邊與一條直角邊之比為13∶5,則這個三角形三邊長分別是()
A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10
3、若等腰三角形中相等的兩邊長為10cm,第三邊長為16cm,那么第三邊上的高為()
A.12cmB.10cmC.8cmD.6cm
4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長的梯子?(畫出示意圖)
5、飛機在空中水平飛行,某一時刻剛好飛到一個男孩頭頂正上方4千米處,過了20秒,飛機距離這個男孩5千米,飛機每小時飛行多少千米?
課后反思或經(jīng)驗總結(jié):
1、什么叫勾股定理;
2、什么樣的三角形的三邊滿足勾股定理;
3、用勾股定理解決一些實際問題。
教學目標:
理解并掌握勾股定理及其證明。 在學生經(jīng)歷“觀察—猜想—歸納—驗證”勾股定理的過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合和從特殊到一般的思想。 通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,培養(yǎng)學生的'合作交流意識和探索精神
重點
探索和證明勾股定理。
難點
用拼圖方法證明勾股定理。
教學準備:
教具
多媒體課件。
學具
剪刀和邊長分別為a、b的兩個連體正方形紙片。
教學流程安排
活動流程圖 活動內(nèi)容和目的
活動1 創(chuàng)設情境→激發(fā)興趣 通過對趙爽弦圖的了解,激發(fā)起學生對勾股定理的探索興趣。
活動2 觀察特例→發(fā)現(xiàn)新知 通過問題激發(fā)學生好奇、探究和主動學習的欲望。
活動3 深入探究→交流歸納 觀察分析方格圖,得出直角三角形的性質(zhì)——勾股定理,發(fā)展學生分析問題的能力。
活動4 拼圖驗證→加深理解 通過剪拼趙爽弦圖證明勾股定理,體會數(shù)形結(jié)合思想,激發(fā)探索精神。
活動5 實踐應用→拓展提高 初步應用所學知識,加深理解。
活動6 回顧小結(jié)→整體感知 回顧、反思、交流。
活動7 布置作業(yè)→鞏固加深 鞏固、發(fā)展提高。
一、教案背景概述:
教材分析: 勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的"形"的特點,轉(zhuǎn)化為三邊之間的"數(shù)"的關系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學教學內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
學生分析:1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設計,能非常簡單地將學生的注意力引向本節(jié)課的本質(zhì)。2、以與勾股定理有關的人文歷史知識為背景展開對直角三角形三邊關系的討論,能激發(fā)學生的學習興趣。
設計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終, 讓學生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學生學習數(shù)學的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學目標:
1、 經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、 經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、 培養(yǎng)學生學習數(shù)學的興趣和愛國熱情。
4、 欣賞設計圖形美。
二、教案運行描述:
教學準備階段:
學生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關人物歷史資料等投影圖片。
三、教學流程:
(一)引入
同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關系)
(二)實驗探究
1、取方格紙片,在上面先設計任意格點直角三角形,再以它們的.每一邊分別向三角形外作正方形,如圖1
設網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)
交流后得出一般結(jié)論: (用關于a、b、c的式子表示)
(三)探索所得結(jié)論的正確性
當直角三角形的直角邊分別為a 、b,斜邊為c時, 是否一定成立?
1、指導學生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)
在學生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:
如圖2(用補的方法說明)
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數(shù)學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數(shù)學家,特別選用他設計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)
如圖3(用割的方法去探索)
師介紹: (出示圖片) 中國古代數(shù)學家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前20xx年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關系,既嚴密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學家。我國數(shù)學家們?yōu)榱思o念我國在這方面的數(shù)學成就,將這一結(jié)論命名為"勾股定理"。(點題)
20xx年,世界數(shù)學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學的輝煌成就。(見課本50頁彩圖,欣賞圖片)
如圖4(構(gòu)造新圖形的方法去探索)
師介紹:(出示圖片)勾股定理是數(shù)學史上的一顆璀璨明珠,它的證明在數(shù)學史上屢創(chuàng)奇跡,從畢達哥拉斯到現(xiàn)在,吸引著世界上無數(shù)的數(shù)學家、物理學家、數(shù)學愛好者對它的探究,甚至政界要人——美國第20任總統(tǒng)加菲爾德,也加入到對它的探索證明中,如圖是他當年設計的證明方法。據(jù)說至今已經(jīng)找到的證明方法有四百多種,且每年還會有所增加。(若有時間可以繼續(xù)出示學生中有價值的圖片進行討論),有興趣的同學課后可以繼續(xù)探索……
四、總結(jié):
本節(jié)課學習的勾股定理用語言敘說為:
五、作業(yè):
1、繼續(xù)收集、整理有關勾股定理的證明方的探索問題并交流。
2、探索勾股定理的運用。
教學目標
知識與技能:
了解勾股定理的一些證明方法,會簡單應用勾股定理解決問題
過程與方法:
在充分觀察、歸納、猜想的基礎上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結(jié)合、從特殊到一般等數(shù)學思想。
情感態(tài)度價值觀:
通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學生的民族自豪感。
教學過程
1、創(chuàng)設情境
問題1國際數(shù)學家大會是最高水平的全球性數(shù)學學科學術(shù)會議,被譽為數(shù)學界的“奧運會”。2002年在北京召開了第24屆國際數(shù)學家大會。下圖就是大會會徽的圖案。你見過這個圖案嗎?它由哪些我們學習過的基本圖形組成?這個圖案有什么特別的含義?
師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發(fā)現(xiàn)直角三角形的全等關系,指出通過今天的學習,就能理解會徽圖案的含義。
設計意圖:本節(jié)課是本章的起始課,重視引言教學,從國際數(shù)學家大會的會徽說起,設置懸念,引入課題。
2、探究勾股定理
觀看洋蔥數(shù)學中關于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學世界
問題2相傳2500多年前,畢達哥拉斯有一次在朋友家作客時,發(fā)現(xiàn)朋友家用轉(zhuǎn)鋪成的地面圖案反應了直角三角形三邊的某種數(shù)量關系,請你觀察下圖,你從中發(fā)現(xiàn)了什么數(shù)量關系?
師生活動:學生先獨立觀察思考一分鐘后,小組交流合作分析圖形中兩個藍色正方形與橙色正方形有哪些數(shù)量關系,教師參與學生的討論
追問:由這三個正方形的邊長構(gòu)成的'等腰直角三角形三條邊長之間又有怎么樣的關系?
師生活動:教師引導學生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結(jié)論
問題3:數(shù)學研究遵循從特殊到一般的數(shù)學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關系也同樣成立。
師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補兩種方法,求出其面積。
一、教學目標
(一)知識點
1、體驗勾股定理的探索過程,由特例猜想勾股定理,再由特例驗證勾股定理。
2、會利用勾股定理解釋生活中的簡單現(xiàn)象。
(二)能力訓練要求
1、在學生充分觀察、歸納、猜想、探索勾股定理的過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的思想。
2、在探索勾股定理的過程中,發(fā)展學生歸納、概括和有條理地表達活動過程及結(jié)論的`能力。
(三)情感與價值觀要求
1、培養(yǎng)學生積極參與、合作交流的意識。
2、在探索勾股定理的過程中,體驗獲得成功的快樂,鍛煉學生克服困難的勇氣。
二、教學重、難點
重點:探索和驗證勾股定理。
難點:在方格紙上通過計算面積的方法探索勾股定理。
三、教學方法
交流探索猜想。
在方格紙上,同學們通過計算以直角三角形的三邊為邊長的三個正方形的面積,在合作交流的過程中,比較這三個正方形的面積,由此猜想出直角三角形的三邊關系。
四、教具準備
1、學生每人課前準備若干張方格紙。
2、投影片三張:
第一張:填空(記作1.1.1 A);
第二張:問題串(記作1.1.1 B);
第三張:做一做(記作1.1.1 C)。
五、教學過程
創(chuàng)設問題情境,引入新課
出示投影片(1.1.1 A)
(1)三角形按角分類,可分為幾類?
(2)對于一般的三角形來說,判斷它們?nèi)鹊臈l件有哪些?對于直角三角形呢?
(3)有兩個直角三角形,如果有兩條邊對應相等,那么這兩個直角三角形一定全等嗎?
教學課題:
勾股定理的應用
教學時間
(日期、課時)
教材分析:
學情分析:
教 學目標:
能運用勾股定理及直角三角形的判定條件解決實際問題。
在運用勾股定理解決實際問題的過程中,感受數(shù)學的“轉(zhuǎn)化” 思想(把解斜三角形問題轉(zhuǎn)化為解直角三角形的問題),進一步發(fā)展有條理思考和有條理表達的能力,體會數(shù)學的應用價值。
教學準備
《數(shù)學學與練》
集體備課意見和主要參考資料
頁邊批注
教學過程
一、 新課導入
本課時的教學內(nèi)容是勾股定理在實際中的應用。除課本提供的情境外,教學中可以根據(jù)實際情況另行設計一些具體情境,也利用課本提供的素材組織數(shù)學活動。比如,把課本例2改編為開放式的問題情境:
一架長為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m。如果梯子的頂端下滑0.5m,你認為梯子的底端會發(fā)生什么變化?與同學交流 。
創(chuàng)設學生身邊的問題情境,為每一個學生提供探索的空間,有利于發(fā)揮學生的主體性;這樣的問題學生常常會從自己的`生活經(jīng)驗出發(fā),產(chǎn)生不同的思考方法和結(jié)論(教學中學生可能的結(jié)論有:底端也滑動 0.5m;如果梯子的頂端滑到地面 上,梯子的頂端則滑動8m,估計梯子底端的滑動小于8m,所以梯子的頂端 下滑0.5m,它的底端的滑動小于0.5m;構(gòu)造直角三角形,運用勾股定理計算梯子滑動前、后底端到墻的垂直距離的差,得出梯子底端滑動約0.61m的結(jié)論等);通過與同學交流,完善各自的想法,有利于學生主動地把實際問題轉(zhuǎn)化為數(shù)學問題 ,從中感受用數(shù)學的眼光審視客觀世界的樂趣 。
二、新課講授
問題一 在上面的情境中,如果梯子的頂端下滑 1m,那么梯子的底端滑動多少米?
組織學生嘗試用勾股定理解決問題,對有困難的學生教師給予及時的幫助和指導。
問題二 從上面所獲得的信息中,你對梯子下滑的變化過程有進一步的思考嗎?與同學交流。
設計問題二促使學生能主動積 極地從數(shù)學的'角度思考實際問題。教學中學生可能會有多種思考、比如,
①這個變化過程中,梯子底端滑動的距離總比頂端下滑的距離大;
②因為梯子頂端 下滑到地面時,頂端下滑了8m,而底端只滑動4m,所以這個變化過程中,梯子底端滑動的距離不一定比頂端下滑的距離大;
③由勾股數(shù)可知,當梯子頂端下滑到離地面的垂直距離為6m,即頂端下滑2m時,底端到墻的垂直距離是8m,即底端電滑動2m等。教學中不要把尋找規(guī)律作為這個探索活動的目標,應讓學生進行充分的交流,使學生逐步學會運用數(shù)學的眼光去審視客觀世界,從不同的角度去思考問題,獲得一些研究問題的經(jīng)驗和方法、
3、例題教學
課本的例1是勾股定理的簡單應用,教學中可根據(jù)教學的實際情況補充一些實際應用問題,把課本習題2.7第4題作為補充例題。通過這個問題的討論,把“32+b2=c2”看作一個方程,設折斷處離地面x尺,依據(jù)問題給出的條件就把它轉(zhuǎn)化為熟悉的會解的一元二次方程32+x2=(10—x)2,從中可以讓學生感受數(shù)學的“轉(zhuǎn)化”思想,進一步了解勾股定理的悠久歷史和我國古代人民的聰明才智、
三、鞏固練習
1、甲、乙兩人同時從同一地點出發(fā),甲往東走了4km,乙往南走了6km,這時甲、乙兩人相距__________km。
2、如圖,一圓柱高8cm,底面半徑2cm,一只螞蟻從點A爬到點B處吃食,要爬行的最短路程( 取3)是( )。
(A)20cm (B)10cm (C)14cm (D)無法確定
3、如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m。求這塊草坪的面積。
四、小結(jié)
我們知道勾股定理揭示了直角三角形的三邊之間的數(shù)量關系,已知直角 三角形中的任意兩邊就可以依據(jù)勾股定理求出第三邊。從應用勾股定理解決實際問題中,我們進一步認識到把直角三角形中三邊關系“a2+b2=c2”看成一個方程,只要 依據(jù)問題的條件把它轉(zhuǎn)化為我們會解的方程,就把解實際問題轉(zhuǎn)化為解方程。
感謝您閱讀“幼兒教師教育網(wǎng)”的《初中數(shù)學勾股定理板書設計(匯總11篇)》一文,希望能解決您找不到幼師資料時遇到的問題和疑惑,同時,yjs21.com編輯還為您精選準備了勾股定理教案專題,希望您能喜歡!
相關推薦
初中數(shù)學勾股定理知識點總結(jié) 篇11、正數(shù)和負數(shù)的有關概念(1)正數(shù):比0大的數(shù)叫做正數(shù);負數(shù):比0小的數(shù)叫做負數(shù);0既不是正數(shù),也不是負數(shù)。(2)正數(shù)和負數(shù)表示相反意義的量。2、有理數(shù)的概念及分類3、有關數(shù)軸(1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直...
現(xiàn)在向您介紹幼兒園教案《八年級數(shù)學上冊《勾股定理的應用》教學設計反思》《八年級數(shù)學上冊《勾股定理的應用》教學設計反思》這是一篇八年級上冊數(shù)學教案,本節(jié)課是人教版數(shù)學八年級下冊第十七章第一節(jié)第二課時的內(nèi)...
本篇優(yōu)秀的“勾股定理教案”文章是幼兒教師教育網(wǎng)編輯認真挑選的結(jié)果,如果您想要隨時查看本文請記得收藏。根據(jù)教學要求老師在上課前需要準備好教案課件,教案課件里的內(nèi)容是老師自己去完善的。?學生課堂反應的不同可以幫助教師制定不同的教學策略。...
最新更新